ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.78 by root, Thu Dec 4 03:48:19 2008 UTC vs.
Revision 1.130 by root, Wed Dec 5 19:03:27 2018 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Deliantra is free software: you can redistribute it and/or modify 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * it under the terms of the GNU General Public License as published by 8 * the terms of the Affero GNU General Public License as published by the
8 * the Free Software Foundation, either version 3 of the License, or 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * (at your option) any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
18 * 20 *
19 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 22 */
21 23
22#ifndef UTIL_H__ 24#ifndef UTIL_H__
23#define UTIL_H__ 25#define UTIL_H__
26
27#include <compiler.h>
24 28
25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0 29#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs 30#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator 31#define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
29#if __GNUC__ >= 3
30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33#else
34# define is_constant(c) 0
35# define expect(expr,value) (expr)
36# define prefetch(addr,rw,locality)
37#endif
38
39#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40# define decltype(x) typeof(x)
41#endif
42
43// put into ifs if you are very sure that the expression
44// is mostly true or mosty false. note that these return
45// booleans, not the expression.
46#define expect_false(expr) expect ((expr) != 0, 0)
47#define expect_true(expr) expect ((expr) != 0, 1)
48 32
49#include <pthread.h> 33#include <pthread.h>
50 34
51#include <cstddef> 35#include <cstddef>
52#include <cmath> 36#include <cmath>
53#include <new> 37#include <new>
54#include <vector> 38#include <vector>
55 39
56#include <glib.h> 40#include <glib.h>
41
42#include <flat_hash_map.hpp>
57 43
58#include <shstr.h> 44#include <shstr.h>
59#include <traits.h> 45#include <traits.h>
60 46
61#if DEBUG_SALLOC 47#if DEBUG_SALLOC
69# define g_slice_alloc0(s) calloc (1, (s)) 55# define g_slice_alloc0(s) calloc (1, (s))
70# define g_slice_alloc(s) malloc ((s)) 56# define g_slice_alloc(s) malloc ((s))
71# define g_slice_free1(s,p) free ((p)) 57# define g_slice_free1(s,p) free ((p))
72#endif 58#endif
73 59
74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75#define auto(var,expr) decltype(expr) var = (expr)
76
77// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
78// that is in scope for the next statement only 61// that is in scope for the next statement only
79// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
80// (note: works great for pointers) 63// (note: works great for pointers)
81// most ugly macro I ever wrote 64// most ugly macro I ever wrote
82#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
87 70
88// in range excluding end 71// in range excluding end
89#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91 74
92void cleanup (const char *cause, bool make_core = false); 75ecb_cold void cleanup (const char *cause, bool make_core = false);
93void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
94 77
95// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
96// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100 83
101template<typename T> static inline void min_it (T &v, T m) { v = min (v, m); } 84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
102template<typename T> static inline void max_it (T &v, T m) { v = max (v, m); } 85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
103template<typename T> static inline void clamp_it (T &v, T a, T b) { v = clamp (v, a, b); } 86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
104 87
105template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106 89
107template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); } 90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); } 91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109 92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
103
104// sign0 returns -1, 0 or +1
105template<typename T>
106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
111
112// div* only work correctly for div > 0
110// div, with correct rounding (< 0.5 downwards, >=0.5 upwards) 113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
111template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; } 114template<typename T> static inline T div (T val, T div)
115{
116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
112// div, round-up 122// div, round-up
113template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; } 123template<typename T> static inline T div_ru (T val, T div)
124{
125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126}
114// div, round-down 127// div, round-down
115template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; } 128template<typename T> static inline T div_rd (T val, T div)
129{
130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131}
116 132
133// lerp* only work correctly for min_in < max_in
134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
117template<typename T> 135template<typename T>
118static inline T 136static inline T
119lerp (T val, T min_in, T max_in, T min_out, T max_out) 137lerp (T val, T min_in, T max_in, T min_out, T max_out)
120{ 138{
121 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in); 139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
180 int32_t d = b - a; 198 int32_t d = b - a;
181 d &= d >> 31; 199 d &= d >> 31;
182 return b - d; 200 return b - d;
183} 201}
184 202
185// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
186// on modern cpus 204// on modern cpus
187inline int 205inline int
188isqrt (int n) 206isqrt (int n)
189{ 207{
190 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
191} 223}
192 224
193// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
194#if 0 226#if 0
195// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
196#else 228#else
197// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
198#endif 230#endif
199inline int 231inline int
200idistance (int dx, int dy) 232idistance (int dx, int dy)
201{ 233{
202 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
203 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
204 236
205#if 0 237#if 0
206 return dx_ > dy_ 238 return dx_ > dy_
209#else 241#else
210 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
211#endif 243#endif
212} 244}
213 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
214/* 266/*
215 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
216 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
217 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
218 */ 270 */
220absdir (int d) 272absdir (int d)
221{ 273{
222 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
223} 275}
224 276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
225extern ssize_t slice_alloc; // statistics 281extern ssize_t slice_alloc; // statistics
226 282
227void *salloc_ (int n) throw (std::bad_alloc); 283void *salloc_ (int n);
228void *salloc_ (int n, void *src) throw (std::bad_alloc); 284void *salloc_ (int n, void *src);
229 285
230// strictly the same as g_slice_alloc, but never returns 0 286// strictly the same as g_slice_alloc, but never returns 0
231template<typename T> 287template<typename T>
232inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); } 288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
233 289
234// also copies src into the new area, like "memdup" 290// also copies src into the new area, like "memdup"
235// if src is 0, clears the memory 291// if src is 0, clears the memory
236template<typename T> 292template<typename T>
237inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); } 293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
238 294
239// clears the memory 295// clears the memory
240template<typename T> 296template<typename T>
241inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); } 297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
242 298
243// for symmetry 299// for symmetry
244template<typename T> 300template<typename T>
245inline void sfree (T *ptr, int n = 1) throw () 301inline void sfree (T *ptr, int n = 1) noexcept
246{ 302{
247 if (expect_true (ptr)) 303 if (ecb_expect_true (ptr))
248 { 304 {
249 slice_alloc -= n * sizeof (T); 305 slice_alloc -= n * sizeof (T);
250 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T)); 306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
251 g_slice_free1 (n * sizeof (T), (void *)ptr); 307 g_slice_free1 (n * sizeof (T), (void *)ptr);
252 assert (slice_alloc >= 0);//D
253 } 308 }
254} 309}
255 310
256// nulls the pointer 311// nulls the pointer
257template<typename T> 312template<typename T>
258inline void sfree0 (T *&ptr, int n = 1) throw () 313inline void sfree0 (T *&ptr, int n = 1) noexcept
259{ 314{
260 sfree<T> (ptr, n); 315 sfree<T> (ptr, n);
261 ptr = 0; 316 ptr = 0;
262} 317}
263 318
331 typedef const Tp *const_pointer; 386 typedef const Tp *const_pointer;
332 typedef Tp &reference; 387 typedef Tp &reference;
333 typedef const Tp &const_reference; 388 typedef const Tp &const_reference;
334 typedef Tp value_type; 389 typedef Tp value_type;
335 390
336 template <class U> 391 template <class U>
337 struct rebind 392 struct rebind
338 { 393 {
339 typedef slice_allocator<U> other; 394 typedef slice_allocator<U> other;
340 }; 395 };
341 396
342 slice_allocator () throw () { } 397 slice_allocator () noexcept { }
343 slice_allocator (const slice_allocator &) throw () { } 398 slice_allocator (const slice_allocator &) noexcept { }
344 template<typename Tp2> 399 template<typename Tp2>
345 slice_allocator (const slice_allocator<Tp2> &) throw () { } 400 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
346 401
347 ~slice_allocator () { } 402 ~slice_allocator () { }
348 403
349 pointer address (reference x) const { return &x; } 404 pointer address (reference x) const { return &x; }
350 const_pointer address (const_reference x) const { return &x; } 405 const_pointer address (const_reference x) const { return &x; }
357 void deallocate (pointer p, size_type n) 412 void deallocate (pointer p, size_type n)
358 { 413 {
359 sfree<Tp> (p, n); 414 sfree<Tp> (p, n);
360 } 415 }
361 416
362 size_type max_size () const throw () 417 size_type max_size () const noexcept
363 { 418 {
364 return size_t (-1) / sizeof (Tp); 419 return size_t (-1) / sizeof (Tp);
365 } 420 }
366 421
367 void construct (pointer p, const Tp &val) 422 void construct (pointer p, const Tp &val)
373 { 428 {
374 p->~Tp (); 429 p->~Tp ();
375 } 430 }
376}; 431};
377 432
378// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 433// basically a memory area, but refcounted
379// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 434struct refcnt_buf
380// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
381struct tausworthe_random_generator
382{ 435{
383 // generator 436 char *data;
384 uint32_t state [4];
385 437
386 void operator =(const tausworthe_random_generator &src) 438 refcnt_buf (size_t size = 0);
387 { 439 refcnt_buf (void *data, size_t size);
388 state [0] = src.state [0];
389 state [1] = src.state [1];
390 state [2] = src.state [2];
391 state [3] = src.state [3];
392 }
393 440
394 void seed (uint32_t seed); 441 refcnt_buf (const refcnt_buf &src)
395 uint32_t next ();
396
397 // uniform distribution, 0 .. max (0, num - 1)
398 uint32_t operator ()(uint32_t num)
399 { 442 {
400 return is_constant (num) 443 data = src.data;
401 ? (next () * (uint64_t)num) >> 32U 444 inc ();
402 : get_range (num);
403 } 445 }
404 446
405 // return a number within (min .. max) 447 ~refcnt_buf ();
406 int operator () (int r_min, int r_max)
407 {
408 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
409 ? r_min + operator ()(r_max - r_min + 1)
410 : get_range (r_min, r_max);
411 }
412 448
413 double operator ()() 449 refcnt_buf &operator =(const refcnt_buf &src);
450
451 operator char *()
414 { 452 {
415 return this->next () / (double)0xFFFFFFFFU; 453 return data;
454 }
455
456 size_t size () const
457 {
458 return _size ();
416 } 459 }
417 460
418protected: 461protected:
419 uint32_t get_range (uint32_t r_max); 462 enum {
420 int get_range (int r_min, int r_max); 463 overhead = sizeof (uint32_t) * 2
421}; 464 };
422 465
423typedef tausworthe_random_generator rand_gen; 466 uint32_t &_size () const
467 {
468 return ((unsigned int *)data)[-2];
469 }
424 470
425extern rand_gen rndm, rmg_rndm; 471 uint32_t &_refcnt () const
472 {
473 return ((unsigned int *)data)[-1];
474 }
475
476 void _alloc (uint32_t size)
477 {
478 data = ((char *)salloc<char> (size + overhead)) + overhead;
479 _size () = size;
480 _refcnt () = 1;
481 }
482
483 void _dealloc ();
484
485 void inc ()
486 {
487 ++_refcnt ();
488 }
489
490 void dec ()
491 {
492 if (!--_refcnt ())
493 _dealloc ();
494 }
495};
426 496
427INTERFACE_CLASS (attachable) 497INTERFACE_CLASS (attachable)
428struct refcnt_base 498struct refcnt_base
429{ 499{
430 typedef int refcnt_t; 500 typedef int refcnt_t;
445 // p if not null 515 // p if not null
446 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; } 516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
447 517
448 void refcnt_dec () 518 void refcnt_dec ()
449 { 519 {
450 if (!is_constant (p)) 520 if (!ecb_is_constant (p))
451 --*refcnt_ref (); 521 --*refcnt_ref ();
452 else if (p) 522 else if (p)
453 --p->refcnt; 523 --p->refcnt;
454 } 524 }
455 525
456 void refcnt_inc () 526 void refcnt_inc ()
457 { 527 {
458 if (!is_constant (p)) 528 if (!ecb_is_constant (p))
459 ++*refcnt_ref (); 529 ++*refcnt_ref ();
460 else if (p) 530 else if (p)
461 ++p->refcnt; 531 ++p->refcnt;
462 } 532 }
463 533
492typedef refptr<maptile> maptile_ptr; 562typedef refptr<maptile> maptile_ptr;
493typedef refptr<object> object_ptr; 563typedef refptr<object> object_ptr;
494typedef refptr<archetype> arch_ptr; 564typedef refptr<archetype> arch_ptr;
495typedef refptr<client> client_ptr; 565typedef refptr<client> client_ptr;
496typedef refptr<player> player_ptr; 566typedef refptr<player> player_ptr;
567typedef refptr<region> region_ptr;
568
569#define STRHSH_NULL 2166136261
570
571static inline uint32_t
572strhsh (const char *s)
573{
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrently with the looping logic.
579 // we modify the hash a bit to improve its distribution
580 uint32_t hash = STRHSH_NULL;
581
582 while (*s)
583 hash = (hash ^ *s++) * 16777619U;
584
585 return hash ^ (hash >> 16);
586}
587
588static inline uint32_t
589memhsh (const char *s, size_t len)
590{
591 uint32_t hash = STRHSH_NULL;
592
593 while (len--)
594 hash = (hash ^ *s++) * 16777619U;
595
596 return hash;
597}
497 598
498struct str_hash 599struct str_hash
499{ 600{
500 std::size_t operator ()(const char *s) const 601 std::size_t operator ()(const char *s) const
501 { 602 {
502 unsigned long hash = 0;
503
504 /* use the one-at-a-time hash function, which supposedly is
505 * better than the djb2-like one used by perl5.005, but
506 * certainly is better then the bug used here before.
507 * see http://burtleburtle.net/bob/hash/doobs.html
508 */
509 while (*s)
510 {
511 hash += *s++;
512 hash += hash << 10;
513 hash ^= hash >> 6;
514 }
515
516 hash += hash << 3;
517 hash ^= hash >> 11;
518 hash += hash << 15;
519
520 return hash; 603 return strhsh (s);
521 } 604 }
605
606 std::size_t operator ()(const shstr &s) const
607 {
608 return strhsh (s);
609 }
610
611 typedef ska::power_of_two_hash_policy hash_policy;
522}; 612};
523 613
524struct str_equal 614struct str_equal
525{ 615{
526 bool operator ()(const char *a, const char *b) const 616 bool operator ()(const char *a, const char *b) const
552 } 642 }
553}; 643};
554 644
555// This container blends advantages of linked lists 645// This container blends advantages of linked lists
556// (efficiency) with vectors (random access) by 646// (efficiency) with vectors (random access) by
557// by using an unordered vector and storing the vector 647// using an unordered vector and storing the vector
558// index inside the object. 648// index inside the object.
559// 649//
560// + memory-efficient on most 64 bit archs 650// + memory-efficient on most 64 bit archs
561// + O(1) insert/remove 651// + O(1) insert/remove
562// + free unique (but varying) id for inserted objects 652// + free unique (but varying) id for inserted objects
599 insert (&obj); 689 insert (&obj);
600 } 690 }
601 691
602 void erase (T *obj) 692 void erase (T *obj)
603 { 693 {
604 unsigned int pos = obj->*indexmember; 694 object_vector_index pos = obj->*indexmember;
605 obj->*indexmember = 0; 695 obj->*indexmember = 0;
606 696
607 if (pos < this->size ()) 697 if (pos < this->size ())
608 { 698 {
609 (*this)[pos - 1] = (*this)[this->size () - 1]; 699 (*this)[pos - 1] = (*this)[this->size () - 1];
617 { 707 {
618 erase (&obj); 708 erase (&obj);
619 } 709 }
620}; 710};
621 711
712/////////////////////////////////////////////////////////////////////////////
713
714// something like a vector or stack, but without
715// out of bounds checking
716template<typename T>
717struct fixed_stack
718{
719 T *data;
720 int size;
721 int max;
722
723 fixed_stack ()
724 : size (0), data (0)
725 {
726 }
727
728 fixed_stack (int max)
729 : size (0), max (max)
730 {
731 data = salloc<T> (max);
732 }
733
734 void reset (int new_max)
735 {
736 sfree (data, max);
737 size = 0;
738 max = new_max;
739 data = salloc<T> (max);
740 }
741
742 void free ()
743 {
744 sfree (data, max);
745 data = 0;
746 }
747
748 ~fixed_stack ()
749 {
750 sfree (data, max);
751 }
752
753 T &operator[](int idx)
754 {
755 return data [idx];
756 }
757
758 void push (T v)
759 {
760 data [size++] = v;
761 }
762
763 T &pop ()
764 {
765 return data [--size];
766 }
767
768 T remove (int idx)
769 {
770 T v = data [idx];
771
772 data [idx] = data [--size];
773
774 return v;
775 }
776};
777
778/////////////////////////////////////////////////////////////////////////////
779
622// basically does what strncpy should do, but appends "..." to strings exceeding length 780// basically does what strncpy should do, but appends "..." to strings exceeding length
781// returns the number of bytes actually used (including \0)
623void assign (char *dst, const char *src, int maxlen); 782int assign (char *dst, const char *src, int maxsize);
624 783
625// type-safe version of assign 784// type-safe version of assign
626template<int N> 785template<int N>
627inline void assign (char (&dst)[N], const char *src) 786inline int assign (char (&dst)[N], const char *src)
628{ 787{
629 assign ((char *)&dst, src, N); 788 return assign ((char *)&dst, src, N);
630} 789}
631 790
632typedef double tstamp; 791typedef double tstamp;
633 792
634// return current time as timestamp 793// return current time as timestamp
635tstamp now (); 794tstamp now ();
636 795
637int similar_direction (int a, int b); 796int similar_direction (int a, int b);
638 797
639// like sprintf, but returns a "static" buffer 798// like v?sprintf, but returns a "static" buffer
640const char *format (const char *format, ...); 799char *vformat (const char *format, va_list ap);
800char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
801
802// safety-check player input which will become object->msg
803bool msg_is_safe (const char *msg);
641 804
642///////////////////////////////////////////////////////////////////////////// 805/////////////////////////////////////////////////////////////////////////////
643// threads, very very thin wrappers around pthreads 806// threads, very very thin wrappers around pthreads
644 807
645struct thread 808struct thread

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines