ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.28 by root, Mon Jan 15 01:25:41 2007 UTC vs.
Revision 1.72 by root, Wed Apr 30 16:26:28 2008 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
4#if __GNUC__ >= 3 29#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
6#else 33#else
7# define is_constant(c) 0 34# define is_constant(c) 0
35# define expect(expr,value) (expr)
36# define prefetch(addr,rw,locality)
8#endif 37#endif
38
39#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40# define decltype(x) typeof(x)
41#endif
42
43// put into ifs if you are very sure that the expression
44// is mostly true or mosty false. note that these return
45// booleans, not the expression.
46#define expect_false(expr) expect ((expr) != 0, 0)
47#define expect_true(expr) expect ((expr) != 0, 1)
48
49#include <pthread.h>
9 50
10#include <cstddef> 51#include <cstddef>
11#include <cmath> 52#include <cmath>
12#include <new> 53#include <new>
13#include <vector> 54#include <vector>
15#include <glib.h> 56#include <glib.h>
16 57
17#include <shstr.h> 58#include <shstr.h>
18#include <traits.h> 59#include <traits.h>
19 60
61#if DEBUG_SALLOC
62# define g_slice_alloc0(s) debug_slice_alloc0(s)
63# define g_slice_alloc(s) debug_slice_alloc(s)
64# define g_slice_free1(s,p) debug_slice_free1(s,p)
65void *g_slice_alloc (unsigned long size);
66void *g_slice_alloc0 (unsigned long size);
67void g_slice_free1 (unsigned long size, void *ptr);
68#elif PREFER_MALLOC
69# define g_slice_alloc0(s) calloc (1, (s))
70# define g_slice_alloc(s) malloc ((s))
71# define g_slice_free1(s,p) free ((p))
72#endif
73
20// use a gcc extension for auto declarations until ISO C++ sanctifies them 74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
21#define AUTODECL(var,expr) typeof(expr) var = (expr) 75#define auto(var,expr) decltype(expr) var = (expr)
22 76
23// very ugly macro that basicaly declares and initialises a variable 77// very ugly macro that basicaly declares and initialises a variable
24// that is in scope for the next statement only 78// that is in scope for the next statement only
25// works only for stuff that can be assigned 0 and converts to false 79// works only for stuff that can be assigned 0 and converts to false
26// (note: works great for pointers) 80// (note: works great for pointers)
27// most ugly macro I ever wrote 81// most ugly macro I ever wrote
28#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 82#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
29 83
30// in range including end 84// in range including end
31#define IN_RANGE_INC(val,beg,end) \ 85#define IN_RANGE_INC(val,beg,end) \
32 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
33 87
34// in range excluding end 88// in range excluding end
35#define IN_RANGE_EXC(val,beg,end) \ 89#define IN_RANGE_EXC(val,beg,end) \
36 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91
92void cleanup (const char *cause, bool make_core = false);
93void fork_abort (const char *msg);
94
95// rationale for using (U) not (T) is to reduce signed/unsigned issues,
96// as a is often a constant while b is the variable. it is still a bug, though.
97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100
101template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
102
103template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
104template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
105
106template<typename T>
107static inline T
108lerp (T val, T min_in, T max_in, T min_out, T max_out)
109{
110 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
111}
112
113// lots of stuff taken from FXT
114
115/* Rotate right. This is used in various places for checksumming */
116//TODO: that sucks, use a better checksum algo
117static inline uint32_t
118rotate_right (uint32_t c, uint32_t count = 1)
119{
120 return (c << (32 - count)) | (c >> count);
121}
122
123static inline uint32_t
124rotate_left (uint32_t c, uint32_t count = 1)
125{
126 return (c >> (32 - count)) | (c << count);
127}
128
129// Return abs(a-b)
130// Both a and b must not have the most significant bit set
131static inline uint32_t
132upos_abs_diff (uint32_t a, uint32_t b)
133{
134 long d1 = b - a;
135 long d2 = (d1 & (d1 >> 31)) << 1;
136
137 return d1 - d2; // == (b - d) - (a + d);
138}
139
140// Both a and b must not have the most significant bit set
141static inline uint32_t
142upos_min (uint32_t a, uint32_t b)
143{
144 int32_t d = b - a;
145 d &= d >> 31;
146 return a + d;
147}
148
149// Both a and b must not have the most significant bit set
150static inline uint32_t
151upos_max (uint32_t a, uint32_t b)
152{
153 int32_t d = b - a;
154 d &= d >> 31;
155 return b - d;
156}
37 157
38// this is much faster than crossfires original algorithm 158// this is much faster than crossfires original algorithm
39// on modern cpus 159// on modern cpus
40inline int 160inline int
41isqrt (int n) 161isqrt (int n)
58#if 0 178#if 0
59 return dx_ > dy_ 179 return dx_ > dy_
60 ? (dx_ * 61685 + dy_ * 26870) >> 16 180 ? (dx_ * 61685 + dy_ * 26870) >> 16
61 : (dy_ * 61685 + dx_ * 26870) >> 16; 181 : (dy_ * 61685 + dx_ * 26870) >> 16;
62#else 182#else
63 return dx + dy - min (dx, dy) * 5 / 8; 183 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
64#endif 184#endif
65} 185}
66 186
67 187/*
68// makes dynamically allocated objects zero-initialised 188 * absdir(int): Returns a number between 1 and 8, which represent
69struct zero_initialised 189 * the "absolute" direction of a number (it actually takes care of
190 * "overflow" in previous calculations of a direction).
191 */
192inline int
193absdir (int d)
70{ 194{
71 void *operator new (size_t s, void *p) 195 return ((d - 1) & 7) + 1;
72 { 196}
73 memset (p, 0, s);
74 return p;
75 }
76 197
77 void *operator new (size_t s) 198extern ssize_t slice_alloc; // statistics
78 {
79 return g_slice_alloc0 (s);
80 }
81
82 void *operator new[] (size_t s)
83 {
84 return g_slice_alloc0 (s);
85 }
86
87 void operator delete (void *p, size_t s)
88 {
89 g_slice_free1 (s, p);
90 }
91
92 void operator delete[] (void *p, size_t s)
93 {
94 g_slice_free1 (s, p);
95 }
96};
97 199
98void *salloc_ (int n) throw (std::bad_alloc); 200void *salloc_ (int n) throw (std::bad_alloc);
99void *salloc_ (int n, void *src) throw (std::bad_alloc); 201void *salloc_ (int n, void *src) throw (std::bad_alloc);
100 202
101// strictly the same as g_slice_alloc, but never returns 0 203// strictly the same as g_slice_alloc, but never returns 0
113 215
114// for symmetry 216// for symmetry
115template<typename T> 217template<typename T>
116inline void sfree (T *ptr, int n = 1) throw () 218inline void sfree (T *ptr, int n = 1) throw ()
117{ 219{
220 if (expect_true (ptr))
221 {
222 slice_alloc -= n * sizeof (T);
223 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
118 g_slice_free1 (n * sizeof (T), (void *)ptr); 224 g_slice_free1 (n * sizeof (T), (void *)ptr);
225 assert (slice_alloc >= 0);//D
226 }
119} 227}
228
229// nulls the pointer
230template<typename T>
231inline void sfree0 (T *&ptr, int n = 1) throw ()
232{
233 sfree<T> (ptr, n);
234 ptr = 0;
235}
236
237// makes dynamically allocated objects zero-initialised
238struct zero_initialised
239{
240 void *operator new (size_t s, void *p)
241 {
242 memset (p, 0, s);
243 return p;
244 }
245
246 void *operator new (size_t s)
247 {
248 return salloc0<char> (s);
249 }
250
251 void *operator new[] (size_t s)
252 {
253 return salloc0<char> (s);
254 }
255
256 void operator delete (void *p, size_t s)
257 {
258 sfree ((char *)p, s);
259 }
260
261 void operator delete[] (void *p, size_t s)
262 {
263 sfree ((char *)p, s);
264 }
265};
120 266
121// a STL-compatible allocator that uses g_slice 267// a STL-compatible allocator that uses g_slice
122// boy, this is verbose 268// boy, this is verbose
123template<typename Tp> 269template<typename Tp>
124struct slice_allocator 270struct slice_allocator
136 { 282 {
137 typedef slice_allocator<U> other; 283 typedef slice_allocator<U> other;
138 }; 284 };
139 285
140 slice_allocator () throw () { } 286 slice_allocator () throw () { }
141 slice_allocator (const slice_allocator &o) throw () { } 287 slice_allocator (const slice_allocator &) throw () { }
142 template<typename Tp2> 288 template<typename Tp2>
143 slice_allocator (const slice_allocator<Tp2> &) throw () { } 289 slice_allocator (const slice_allocator<Tp2> &) throw () { }
144 290
145 ~slice_allocator () { } 291 ~slice_allocator () { }
146 292
155 void deallocate (pointer p, size_type n) 301 void deallocate (pointer p, size_type n)
156 { 302 {
157 sfree<Tp> (p, n); 303 sfree<Tp> (p, n);
158 } 304 }
159 305
160 size_type max_size ()const throw () 306 size_type max_size () const throw ()
161 { 307 {
162 return size_t (-1) / sizeof (Tp); 308 return size_t (-1) / sizeof (Tp);
163 } 309 }
164 310
165 void construct (pointer p, const Tp &val) 311 void construct (pointer p, const Tp &val)
170 void destroy (pointer p) 316 void destroy (pointer p)
171 { 317 {
172 p->~Tp (); 318 p->~Tp ();
173 } 319 }
174}; 320};
321
322// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
323// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
324// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
325struct tausworthe_random_generator
326{
327 // generator
328 uint32_t state [4];
329
330 void operator =(const tausworthe_random_generator &src)
331 {
332 state [0] = src.state [0];
333 state [1] = src.state [1];
334 state [2] = src.state [2];
335 state [3] = src.state [3];
336 }
337
338 void seed (uint32_t seed);
339 uint32_t next ();
340
341 // uniform distribution
342 uint32_t operator ()(uint32_t num)
343 {
344 return is_constant (num)
345 ? (next () * (uint64_t)num) >> 32U
346 : get_range (num);
347 }
348
349 // return a number within (min .. max)
350 int operator () (int r_min, int r_max)
351 {
352 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
353 ? r_min + operator ()(r_max - r_min + 1)
354 : get_range (r_min, r_max);
355 }
356
357 double operator ()()
358 {
359 return this->next () / (double)0xFFFFFFFFU;
360 }
361
362protected:
363 uint32_t get_range (uint32_t r_max);
364 int get_range (int r_min, int r_max);
365};
366
367typedef tausworthe_random_generator rand_gen;
368
369extern rand_gen rndm;
370
371INTERFACE_CLASS (attachable)
372struct refcnt_base
373{
374 typedef int refcnt_t;
375 mutable refcnt_t ACC (RW, refcnt);
376
377 MTH void refcnt_inc () const { ++refcnt; }
378 MTH void refcnt_dec () const { --refcnt; }
379
380 refcnt_base () : refcnt (0) { }
381};
382
383// to avoid branches with more advanced compilers
384extern refcnt_base::refcnt_t refcnt_dummy;
175 385
176template<class T> 386template<class T>
177struct refptr 387struct refptr
178{ 388{
389 // p if not null
390 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
391
392 void refcnt_dec ()
393 {
394 if (!is_constant (p))
395 --*refcnt_ref ();
396 else if (p)
397 --p->refcnt;
398 }
399
400 void refcnt_inc ()
401 {
402 if (!is_constant (p))
403 ++*refcnt_ref ();
404 else if (p)
405 ++p->refcnt;
406 }
407
179 T *p; 408 T *p;
180 409
181 refptr () : p(0) { } 410 refptr () : p(0) { }
182 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 411 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
183 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 412 refptr (T *p) : p(p) { refcnt_inc (); }
184 ~refptr () { if (p) p->refcnt_dec (); } 413 ~refptr () { refcnt_dec (); }
185 414
186 const refptr<T> &operator =(T *o) 415 const refptr<T> &operator =(T *o)
187 { 416 {
417 // if decrementing ever destroys we need to reverse the order here
188 if (p) p->refcnt_dec (); 418 refcnt_dec ();
189 p = o; 419 p = o;
190 if (p) p->refcnt_inc (); 420 refcnt_inc ();
191
192 return *this; 421 return *this;
193 } 422 }
194 423
195 const refptr<T> &operator =(const refptr<T> o) 424 const refptr<T> &operator =(const refptr<T> &o)
196 { 425 {
197 *this = o.p; 426 *this = o.p;
198 return *this; 427 return *this;
199 } 428 }
200 429
201 T &operator * () const { return *p; } 430 T &operator * () const { return *p; }
202 T *operator ->() const { return p; } 431 T *operator ->() const { return p; }
203 432
204 operator T *() const { return p; } 433 operator T *() const { return p; }
205}; 434};
206 435
207typedef refptr<maptile> maptile_ptr; 436typedef refptr<maptile> maptile_ptr;
242 { 471 {
243 return !strcmp (a, b); 472 return !strcmp (a, b);
244 } 473 }
245}; 474};
246 475
476// Mostly the same as std::vector, but insert/erase can reorder
477// the elements, making append(=insert)/remove O(1) instead of O(n).
478//
479// NOTE: only some forms of erase are available
247template<class T> 480template<class T>
248struct unordered_vector : std::vector<T, slice_allocator<T> > 481struct unordered_vector : std::vector<T, slice_allocator<T> >
249{ 482{
250 typedef typename unordered_vector::iterator iterator; 483 typedef typename unordered_vector::iterator iterator;
251 484
261 { 494 {
262 erase ((unsigned int )(i - this->begin ())); 495 erase ((unsigned int )(i - this->begin ()));
263 } 496 }
264}; 497};
265 498
266template<class T, int T::* index> 499// This container blends advantages of linked lists
500// (efficiency) with vectors (random access) by
501// by using an unordered vector and storing the vector
502// index inside the object.
503//
504// + memory-efficient on most 64 bit archs
505// + O(1) insert/remove
506// + free unique (but varying) id for inserted objects
507// + cache-friendly iteration
508// - only works for pointers to structs
509//
510// NOTE: only some forms of erase/insert are available
511typedef int object_vector_index;
512
513template<class T, object_vector_index T::*indexmember>
267struct object_vector : std::vector<T *, slice_allocator<T *> > 514struct object_vector : std::vector<T *, slice_allocator<T *> >
268{ 515{
516 typedef typename object_vector::iterator iterator;
517
518 bool contains (const T *obj) const
519 {
520 return obj->*indexmember;
521 }
522
523 iterator find (const T *obj)
524 {
525 return obj->*indexmember
526 ? this->begin () + obj->*indexmember - 1
527 : this->end ();
528 }
529
530 void push_back (T *obj)
531 {
532 std::vector<T *, slice_allocator<T *> >::push_back (obj);
533 obj->*indexmember = this->size ();
534 }
535
269 void insert (T *obj) 536 void insert (T *obj)
270 { 537 {
271 assert (!(obj->*index));
272 push_back (obj); 538 push_back (obj);
273 obj->*index = this->size ();
274 } 539 }
275 540
276 void insert (T &obj) 541 void insert (T &obj)
277 { 542 {
278 insert (&obj); 543 insert (&obj);
279 } 544 }
280 545
281 void erase (T *obj) 546 void erase (T *obj)
282 { 547 {
283 assert (obj->*index);
284 int pos = obj->*index; 548 unsigned int pos = obj->*indexmember;
285 obj->*index = 0; 549 obj->*indexmember = 0;
286 550
287 if (pos < this->size ()) 551 if (pos < this->size ())
288 { 552 {
289 (*this)[pos - 1] = (*this)[this->size () - 1]; 553 (*this)[pos - 1] = (*this)[this->size () - 1];
290 (*this)[pos - 1]->*index = pos; 554 (*this)[pos - 1]->*indexmember = pos;
291 } 555 }
292 556
293 this->pop_back (); 557 this->pop_back ();
294 } 558 }
295 559
296 void erase (T &obj) 560 void erase (T &obj)
297 { 561 {
298 errase (&obj); 562 erase (&obj);
299 } 563 }
300}; 564};
301
302template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
303template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
304template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; }
305
306template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
307 565
308// basically does what strncpy should do, but appends "..." to strings exceeding length 566// basically does what strncpy should do, but appends "..." to strings exceeding length
309void assign (char *dst, const char *src, int maxlen); 567void assign (char *dst, const char *src, int maxlen);
310 568
311// type-safe version of assign 569// type-safe version of assign
315 assign ((char *)&dst, src, N); 573 assign ((char *)&dst, src, N);
316} 574}
317 575
318typedef double tstamp; 576typedef double tstamp;
319 577
320// return current time as timestampe 578// return current time as timestamp
321tstamp now (); 579tstamp now ();
322 580
323int similar_direction (int a, int b); 581int similar_direction (int a, int b);
324 582
583// like sprintf, but returns a "static" buffer
584const char *format (const char *format, ...);
585
586/////////////////////////////////////////////////////////////////////////////
587// threads, very very thin wrappers around pthreads
588
589struct thread
590{
591 pthread_t id;
592
593 void start (void *(*start_routine)(void *), void *arg = 0);
594
595 void cancel ()
596 {
597 pthread_cancel (id);
598 }
599
600 void *join ()
601 {
602 void *ret;
603
604 if (pthread_join (id, &ret))
605 cleanup ("pthread_join failed", 1);
606
607 return ret;
608 }
609};
610
611// note that mutexes are not classes
612typedef pthread_mutex_t smutex;
613
614#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
615 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
616#else
617 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
325#endif 618#endif
326 619
620#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
621#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
622#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
623
624typedef pthread_cond_t scond;
625
626#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
627#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
628#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
629#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
630
631#endif
632

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines