ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.57 by root, Tue Oct 16 05:34:24 2007 UTC vs.
Revision 1.78 by root, Thu Dec 4 03:48:19 2008 UTC

1/* 1/*
2 * This file is part of Crossfire TRT, the Roguelike Realtime MORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Crossfire TRT is free software: you can redistribute it and/or modify 6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by 7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or 8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version. 9 * (at your option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 * 18 *
19 * The authors can be reached via e-mail to <crossfire@schmorp.de> 19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 20 */
21 21
22#ifndef UTIL_H__ 22#ifndef UTIL_H__
23#define UTIL_H__ 23#define UTIL_H__
24 24
25//#define PREFER_MALLOC 25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
26 28
27#if __GNUC__ >= 3 29#if __GNUC__ >= 3
28# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
29# define expect(expr,value) __builtin_expect ((expr),(value)) 31# define expect(expr,value) __builtin_expect ((expr),(value))
30# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) 32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
42// is mostly true or mosty false. note that these return 44// is mostly true or mosty false. note that these return
43// booleans, not the expression. 45// booleans, not the expression.
44#define expect_false(expr) expect ((expr) != 0, 0) 46#define expect_false(expr) expect ((expr) != 0, 0)
45#define expect_true(expr) expect ((expr) != 0, 1) 47#define expect_true(expr) expect ((expr) != 0, 1)
46 48
49#include <pthread.h>
50
47#include <cstddef> 51#include <cstddef>
48#include <cmath> 52#include <cmath>
49#include <new> 53#include <new>
50#include <vector> 54#include <vector>
51 55
52#include <glib.h> 56#include <glib.h>
53 57
54#include <shstr.h> 58#include <shstr.h>
55#include <traits.h> 59#include <traits.h>
60
61#if DEBUG_SALLOC
62# define g_slice_alloc0(s) debug_slice_alloc0(s)
63# define g_slice_alloc(s) debug_slice_alloc(s)
64# define g_slice_free1(s,p) debug_slice_free1(s,p)
65void *g_slice_alloc (unsigned long size);
66void *g_slice_alloc0 (unsigned long size);
67void g_slice_free1 (unsigned long size, void *ptr);
68#elif PREFER_MALLOC
69# define g_slice_alloc0(s) calloc (1, (s))
70# define g_slice_alloc(s) malloc ((s))
71# define g_slice_free1(s,p) free ((p))
72#endif
56 73
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr) 75#define auto(var,expr) decltype(expr) var = (expr)
59 76
60// very ugly macro that basicaly declares and initialises a variable 77// very ugly macro that basicaly declares and initialises a variable
70 87
71// in range excluding end 88// in range excluding end
72#define IN_RANGE_EXC(val,beg,end) \ 89#define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74 91
92void cleanup (const char *cause, bool make_core = false);
75void fork_abort (const char *msg); 93void fork_abort (const char *msg);
76 94
77// rationale for using (U) not (T) is to reduce signed/unsigned issues, 95// rationale for using (U) not (T) is to reduce signed/unsigned issues,
78// as a is often a constant while b is the variable. it is still a bug, though. 96// as a is often a constant while b is the variable. it is still a bug, though.
79template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
80template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
81template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
82 100
101template<typename T> static inline void min_it (T &v, T m) { v = min (v, m); }
102template<typename T> static inline void max_it (T &v, T m) { v = max (v, m); }
103template<typename T> static inline void clamp_it (T &v, T a, T b) { v = clamp (v, a, b); }
104
83template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 105template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106
107template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109
110// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
111template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
112// div, round-up
113template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
114// div, round-down
115template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
84 116
85template<typename T> 117template<typename T>
86static inline T 118static inline T
87lerp (T val, T min_in, T max_in, T min_out, T max_out) 119lerp (T val, T min_in, T max_in, T min_out, T max_out)
88{ 120{
89 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 121 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
122}
123
124// lerp, round-down
125template<typename T>
126static inline T
127lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
128{
129 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
130}
131
132// lerp, round-up
133template<typename T>
134static inline T
135lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
136{
137 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
90} 138}
91 139
92// lots of stuff taken from FXT 140// lots of stuff taken from FXT
93 141
94/* Rotate right. This is used in various places for checksumming */ 142/* Rotate right. This is used in various places for checksumming */
172absdir (int d) 220absdir (int d)
173{ 221{
174 return ((d - 1) & 7) + 1; 222 return ((d - 1) & 7) + 1;
175} 223}
176 224
177extern size_t slice_alloc; // statistics 225extern ssize_t slice_alloc; // statistics
226
227void *salloc_ (int n) throw (std::bad_alloc);
228void *salloc_ (int n, void *src) throw (std::bad_alloc);
229
230// strictly the same as g_slice_alloc, but never returns 0
231template<typename T>
232inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
233
234// also copies src into the new area, like "memdup"
235// if src is 0, clears the memory
236template<typename T>
237inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
238
239// clears the memory
240template<typename T>
241inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
242
243// for symmetry
244template<typename T>
245inline void sfree (T *ptr, int n = 1) throw ()
246{
247 if (expect_true (ptr))
248 {
249 slice_alloc -= n * sizeof (T);
250 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
251 g_slice_free1 (n * sizeof (T), (void *)ptr);
252 assert (slice_alloc >= 0);//D
253 }
254}
255
256// nulls the pointer
257template<typename T>
258inline void sfree0 (T *&ptr, int n = 1) throw ()
259{
260 sfree<T> (ptr, n);
261 ptr = 0;
262}
178 263
179// makes dynamically allocated objects zero-initialised 264// makes dynamically allocated objects zero-initialised
180struct zero_initialised 265struct zero_initialised
181{ 266{
182 void *operator new (size_t s, void *p) 267 void *operator new (size_t s, void *p)
185 return p; 270 return p;
186 } 271 }
187 272
188 void *operator new (size_t s) 273 void *operator new (size_t s)
189 { 274 {
190 slice_alloc += s;
191 return g_slice_alloc0 (s); 275 return salloc0<char> (s);
192 } 276 }
193 277
194 void *operator new[] (size_t s) 278 void *operator new[] (size_t s)
195 { 279 {
196 slice_alloc += s;
197 return g_slice_alloc0 (s); 280 return salloc0<char> (s);
198 } 281 }
199 282
200 void operator delete (void *p, size_t s) 283 void operator delete (void *p, size_t s)
201 { 284 {
202 slice_alloc -= s; 285 sfree ((char *)p, s);
203 g_slice_free1 (s, p);
204 } 286 }
205 287
206 void operator delete[] (void *p, size_t s) 288 void operator delete[] (void *p, size_t s)
207 { 289 {
208 slice_alloc -= s; 290 sfree ((char *)p, s);
209 g_slice_free1 (s, p);
210 } 291 }
211}; 292};
212 293
213void *salloc_ (int n) throw (std::bad_alloc); 294// makes dynamically allocated objects zero-initialised
214void *salloc_ (int n, void *src) throw (std::bad_alloc); 295struct slice_allocated
215
216// strictly the same as g_slice_alloc, but never returns 0
217template<typename T>
218inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
219
220// also copies src into the new area, like "memdup"
221// if src is 0, clears the memory
222template<typename T>
223inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
224
225// clears the memory
226template<typename T>
227inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
228
229// for symmetry
230template<typename T>
231inline void sfree (T *ptr, int n = 1) throw ()
232{ 296{
233#ifdef PREFER_MALLOC 297 void *operator new (size_t s, void *p)
234 free (ptr); 298 {
235#else 299 return p;
236 slice_alloc -= n * sizeof (T); 300 }
237 g_slice_free1 (n * sizeof (T), (void *)ptr); 301
238#endif 302 void *operator new (size_t s)
239} 303 {
304 return salloc<char> (s);
305 }
306
307 void *operator new[] (size_t s)
308 {
309 return salloc<char> (s);
310 }
311
312 void operator delete (void *p, size_t s)
313 {
314 sfree ((char *)p, s);
315 }
316
317 void operator delete[] (void *p, size_t s)
318 {
319 sfree ((char *)p, s);
320 }
321};
240 322
241// a STL-compatible allocator that uses g_slice 323// a STL-compatible allocator that uses g_slice
242// boy, this is verbose 324// boy, this is verbose
243template<typename Tp> 325template<typename Tp>
244struct slice_allocator 326struct slice_allocator
256 { 338 {
257 typedef slice_allocator<U> other; 339 typedef slice_allocator<U> other;
258 }; 340 };
259 341
260 slice_allocator () throw () { } 342 slice_allocator () throw () { }
261 slice_allocator (const slice_allocator &o) throw () { } 343 slice_allocator (const slice_allocator &) throw () { }
262 template<typename Tp2> 344 template<typename Tp2>
263 slice_allocator (const slice_allocator<Tp2> &) throw () { } 345 slice_allocator (const slice_allocator<Tp2> &) throw () { }
264 346
265 ~slice_allocator () { } 347 ~slice_allocator () { }
266 348
275 void deallocate (pointer p, size_type n) 357 void deallocate (pointer p, size_type n)
276 { 358 {
277 sfree<Tp> (p, n); 359 sfree<Tp> (p, n);
278 } 360 }
279 361
280 size_type max_size ()const throw () 362 size_type max_size () const throw ()
281 { 363 {
282 return size_t (-1) / sizeof (Tp); 364 return size_t (-1) / sizeof (Tp);
283 } 365 }
284 366
285 void construct (pointer p, const Tp &val) 367 void construct (pointer p, const Tp &val)
310 } 392 }
311 393
312 void seed (uint32_t seed); 394 void seed (uint32_t seed);
313 uint32_t next (); 395 uint32_t next ();
314 396
315 // uniform distribution 397 // uniform distribution, 0 .. max (0, num - 1)
316 uint32_t operator ()(uint32_t num) 398 uint32_t operator ()(uint32_t num)
317 { 399 {
318 return is_constant (num) 400 return is_constant (num)
319 ? (next () * (uint64_t)num) >> 32U 401 ? (next () * (uint64_t)num) >> 32U
320 : get_range (num); 402 : get_range (num);
338 int get_range (int r_min, int r_max); 420 int get_range (int r_min, int r_max);
339}; 421};
340 422
341typedef tausworthe_random_generator rand_gen; 423typedef tausworthe_random_generator rand_gen;
342 424
343extern rand_gen rndm; 425extern rand_gen rndm, rmg_rndm;
344 426
345INTERFACE_CLASS (attachable) 427INTERFACE_CLASS (attachable)
346struct refcnt_base 428struct refcnt_base
347{ 429{
348 typedef int refcnt_t; 430 typedef int refcnt_t;
547 assign ((char *)&dst, src, N); 629 assign ((char *)&dst, src, N);
548} 630}
549 631
550typedef double tstamp; 632typedef double tstamp;
551 633
552// return current time as timestampe 634// return current time as timestamp
553tstamp now (); 635tstamp now ();
554 636
555int similar_direction (int a, int b); 637int similar_direction (int a, int b);
556 638
557// like sprintf, but returns a "static" buffer 639// like sprintf, but returns a "static" buffer
558const char *format (const char *format, ...); 640const char *format (const char *format, ...);
559 641
642/////////////////////////////////////////////////////////////////////////////
643// threads, very very thin wrappers around pthreads
644
645struct thread
646{
647 pthread_t id;
648
649 void start (void *(*start_routine)(void *), void *arg = 0);
650
651 void cancel ()
652 {
653 pthread_cancel (id);
654 }
655
656 void *join ()
657 {
658 void *ret;
659
660 if (pthread_join (id, &ret))
661 cleanup ("pthread_join failed", 1);
662
663 return ret;
664 }
665};
666
667// note that mutexes are not classes
668typedef pthread_mutex_t smutex;
669
670#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
671 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
672#else
673 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
560#endif 674#endif
561 675
676#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
677#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
678#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
679
680typedef pthread_cond_t scond;
681
682#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
683#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
684#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
685#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
686
687#endif
688

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines