ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.36 by root, Thu Jan 25 03:54:45 2007 UTC vs.
Revision 1.86 by root, Sat Jan 3 01:04:19 2009 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
4//#define PREFER_MALLOC 25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
5 28
6#if __GNUC__ >= 3 29#if __GNUC__ >= 3
7# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33# define noinline __attribute__((__noinline__))
8#else 34#else
9# define is_constant(c) 0 35# define is_constant(c) 0
36# define expect(expr,value) (expr)
37# define prefetch(addr,rw,locality)
38# define noinline
10#endif 39#endif
40
41#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
42# define decltype(x) typeof(x)
43#endif
44
45// put into ifs if you are very sure that the expression
46// is mostly true or mosty false. note that these return
47// booleans, not the expression.
48#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
49#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
50
51#include <pthread.h>
11 52
12#include <cstddef> 53#include <cstddef>
13#include <cmath> 54#include <cmath>
14#include <new> 55#include <new>
15#include <vector> 56#include <vector>
17#include <glib.h> 58#include <glib.h>
18 59
19#include <shstr.h> 60#include <shstr.h>
20#include <traits.h> 61#include <traits.h>
21 62
63#if DEBUG_SALLOC
64# define g_slice_alloc0(s) debug_slice_alloc0(s)
65# define g_slice_alloc(s) debug_slice_alloc(s)
66# define g_slice_free1(s,p) debug_slice_free1(s,p)
67void *g_slice_alloc (unsigned long size);
68void *g_slice_alloc0 (unsigned long size);
69void g_slice_free1 (unsigned long size, void *ptr);
70#elif PREFER_MALLOC
71# define g_slice_alloc0(s) calloc (1, (s))
72# define g_slice_alloc(s) malloc ((s))
73# define g_slice_free1(s,p) free ((p))
74#endif
75
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 76// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 77#define auto(var,expr) decltype(expr) var = (expr)
24 78
25// very ugly macro that basicaly declares and initialises a variable 79// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 80// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 81// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 82// (note: works great for pointers)
29// most ugly macro I ever wrote 83// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 84#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 85
32// in range including end 86// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 87#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 88 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 89
36// in range excluding end 90// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 91#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 92 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 93
94void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 95void fork_abort (const char *msg);
41 96
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 97// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 98// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 99template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 100template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 101template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 102
103template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
104template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
105template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
106
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 107template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
108
109template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
110template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
111
112// sign returns -1 or +1
113template<typename T>
114static inline T sign (T v) { return v < 0 ? -1 : +1; }
115// relies on 2c representation
116template<>
117inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
118
119// sign0 returns -1, 0 or +1
120template<typename T>
121static inline T sign0 (T v) { return v ? sign (v) : 0; }
122
123// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
125// div, round-up
126template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
129
130template<typename T>
131static inline T
132lerp (T val, T min_in, T max_in, T min_out, T max_out)
133{
134 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
135}
136
137// lerp, round-down
138template<typename T>
139static inline T
140lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
141{
142 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
143}
144
145// lerp, round-up
146template<typename T>
147static inline T
148lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
149{
150 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151}
152
153// lots of stuff taken from FXT
154
155/* Rotate right. This is used in various places for checksumming */
156//TODO: that sucks, use a better checksum algo
157static inline uint32_t
158rotate_right (uint32_t c, uint32_t count = 1)
159{
160 return (c << (32 - count)) | (c >> count);
161}
162
163static inline uint32_t
164rotate_left (uint32_t c, uint32_t count = 1)
165{
166 return (c >> (32 - count)) | (c << count);
167}
168
169// Return abs(a-b)
170// Both a and b must not have the most significant bit set
171static inline uint32_t
172upos_abs_diff (uint32_t a, uint32_t b)
173{
174 long d1 = b - a;
175 long d2 = (d1 & (d1 >> 31)) << 1;
176
177 return d1 - d2; // == (b - d) - (a + d);
178}
179
180// Both a and b must not have the most significant bit set
181static inline uint32_t
182upos_min (uint32_t a, uint32_t b)
183{
184 int32_t d = b - a;
185 d &= d >> 31;
186 return a + d;
187}
188
189// Both a and b must not have the most significant bit set
190static inline uint32_t
191upos_max (uint32_t a, uint32_t b)
192{
193 int32_t d = b - a;
194 d &= d >> 31;
195 return b - d;
196}
49 197
50// this is much faster than crossfires original algorithm 198// this is much faster than crossfires original algorithm
51// on modern cpus 199// on modern cpus
52inline int 200inline int
53isqrt (int n) 201isqrt (int n)
85absdir (int d) 233absdir (int d)
86{ 234{
87 return ((d - 1) & 7) + 1; 235 return ((d - 1) & 7) + 1;
88} 236}
89 237
238extern ssize_t slice_alloc; // statistics
239
240void *salloc_ (int n) throw (std::bad_alloc);
241void *salloc_ (int n, void *src) throw (std::bad_alloc);
242
243// strictly the same as g_slice_alloc, but never returns 0
244template<typename T>
245inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
246
247// also copies src into the new area, like "memdup"
248// if src is 0, clears the memory
249template<typename T>
250inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
251
252// clears the memory
253template<typename T>
254inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
255
256// for symmetry
257template<typename T>
258inline void sfree (T *ptr, int n = 1) throw ()
259{
260 if (expect_true (ptr))
261 {
262 slice_alloc -= n * sizeof (T);
263 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
264 g_slice_free1 (n * sizeof (T), (void *)ptr);
265 assert (slice_alloc >= 0);//D
266 }
267}
268
269// nulls the pointer
270template<typename T>
271inline void sfree0 (T *&ptr, int n = 1) throw ()
272{
273 sfree<T> (ptr, n);
274 ptr = 0;
275}
276
90// makes dynamically allocated objects zero-initialised 277// makes dynamically allocated objects zero-initialised
91struct zero_initialised 278struct zero_initialised
92{ 279{
93 void *operator new (size_t s, void *p) 280 void *operator new (size_t s, void *p)
94 { 281 {
96 return p; 283 return p;
97 } 284 }
98 285
99 void *operator new (size_t s) 286 void *operator new (size_t s)
100 { 287 {
101 return g_slice_alloc0 (s); 288 return salloc0<char> (s);
102 } 289 }
103 290
104 void *operator new[] (size_t s) 291 void *operator new[] (size_t s)
105 { 292 {
106 return g_slice_alloc0 (s); 293 return salloc0<char> (s);
107 } 294 }
108 295
109 void operator delete (void *p, size_t s) 296 void operator delete (void *p, size_t s)
110 { 297 {
111 g_slice_free1 (s, p); 298 sfree ((char *)p, s);
112 } 299 }
113 300
114 void operator delete[] (void *p, size_t s) 301 void operator delete[] (void *p, size_t s)
115 { 302 {
116 g_slice_free1 (s, p); 303 sfree ((char *)p, s);
117 } 304 }
118}; 305};
119 306
120void *salloc_ (int n) throw (std::bad_alloc); 307// makes dynamically allocated objects zero-initialised
121void *salloc_ (int n, void *src) throw (std::bad_alloc); 308struct slice_allocated
122
123// strictly the same as g_slice_alloc, but never returns 0
124template<typename T>
125inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
126
127// also copies src into the new area, like "memdup"
128// if src is 0, clears the memory
129template<typename T>
130inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
131
132// clears the memory
133template<typename T>
134inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
135
136// for symmetry
137template<typename T>
138inline void sfree (T *ptr, int n = 1) throw ()
139{ 309{
140#ifdef PREFER_MALLOC 310 void *operator new (size_t s, void *p)
141 free (ptr); 311 {
142#else 312 return p;
143 g_slice_free1 (n * sizeof (T), (void *)ptr); 313 }
144#endif 314
145} 315 void *operator new (size_t s)
316 {
317 return salloc<char> (s);
318 }
319
320 void *operator new[] (size_t s)
321 {
322 return salloc<char> (s);
323 }
324
325 void operator delete (void *p, size_t s)
326 {
327 sfree ((char *)p, s);
328 }
329
330 void operator delete[] (void *p, size_t s)
331 {
332 sfree ((char *)p, s);
333 }
334};
146 335
147// a STL-compatible allocator that uses g_slice 336// a STL-compatible allocator that uses g_slice
148// boy, this is verbose 337// boy, this is verbose
149template<typename Tp> 338template<typename Tp>
150struct slice_allocator 339struct slice_allocator
162 { 351 {
163 typedef slice_allocator<U> other; 352 typedef slice_allocator<U> other;
164 }; 353 };
165 354
166 slice_allocator () throw () { } 355 slice_allocator () throw () { }
167 slice_allocator (const slice_allocator &o) throw () { } 356 slice_allocator (const slice_allocator &) throw () { }
168 template<typename Tp2> 357 template<typename Tp2>
169 slice_allocator (const slice_allocator<Tp2> &) throw () { } 358 slice_allocator (const slice_allocator<Tp2> &) throw () { }
170 359
171 ~slice_allocator () { } 360 ~slice_allocator () { }
172 361
181 void deallocate (pointer p, size_type n) 370 void deallocate (pointer p, size_type n)
182 { 371 {
183 sfree<Tp> (p, n); 372 sfree<Tp> (p, n);
184 } 373 }
185 374
186 size_type max_size ()const throw () 375 size_type max_size () const throw ()
187 { 376 {
188 return size_t (-1) / sizeof (Tp); 377 return size_t (-1) / sizeof (Tp);
189 } 378 }
190 379
191 void construct (pointer p, const Tp &val) 380 void construct (pointer p, const Tp &val)
202// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 391// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
203// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 392// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
204// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 393// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
205struct tausworthe_random_generator 394struct tausworthe_random_generator
206{ 395{
207 // generator
208 uint32_t state [4]; 396 uint32_t state [4];
209 397
210 void operator =(const tausworthe_random_generator &src) 398 void operator =(const tausworthe_random_generator &src)
211 { 399 {
212 state [0] = src.state [0]; 400 state [0] = src.state [0];
215 state [3] = src.state [3]; 403 state [3] = src.state [3];
216 } 404 }
217 405
218 void seed (uint32_t seed); 406 void seed (uint32_t seed);
219 uint32_t next (); 407 uint32_t next ();
408};
220 409
221 // uniform distribution 410// Xorshift RNGs, George Marsaglia
411// http://www.jstatsoft.org/v08/i14/paper
412// this one is about 40% faster than the tausworthe one above (i.e. not much),
413// despite the inlining, and has the issue of only creating 2**32-1 numbers.
414// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
415struct xorshift_random_generator
416{
417 uint32_t x, y;
418
419 void operator =(const xorshift_random_generator &src)
420 {
421 x = src.x;
422 y = src.y;
423 }
424
425 void seed (uint32_t seed)
426 {
427 x = seed;
428 y = seed * 69069U;
429 }
430
431 uint32_t next ()
432 {
433 uint32_t t = x ^ (x << 10);
434 x = y;
435 y = y ^ (y >> 13) ^ t ^ (t >> 10);
436 return y;
437 }
438};
439
440template<class generator>
441struct random_number_generator : generator
442{
443 // uniform distribution, 0 .. max (0, num - 1)
222 uint32_t operator ()(uint32_t r_max) 444 uint32_t operator ()(uint32_t num)
223 { 445 {
224 return is_constant (r_max) 446 return !is_constant (num) ? get_range (num) // non-constant
225 ? this->next () % r_max 447 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
226 : get_range (r_max); 448 : this->next () & (num - 1); // constant, power-of-two
227 } 449 }
228 450
229 // return a number within (min .. max) 451 // return a number within (min .. max)
230 int operator () (int r_min, int r_max) 452 int operator () (int r_min, int r_max)
231 { 453 {
232 return is_constant (r_min) && is_constant (r_max) 454 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
233 ? r_min + (*this) (max (r_max - r_min + 1, 1)) 455 ? r_min + operator ()(r_max - r_min + 1)
234 : get_range (r_min, r_max); 456 : get_range (r_min, r_max);
235 } 457 }
236 458
237 double operator ()() 459 double operator ()()
238 { 460 {
242protected: 464protected:
243 uint32_t get_range (uint32_t r_max); 465 uint32_t get_range (uint32_t r_max);
244 int get_range (int r_min, int r_max); 466 int get_range (int r_min, int r_max);
245}; 467};
246 468
247typedef tausworthe_random_generator rand_gen; 469typedef random_number_generator<tausworthe_random_generator> rand_gen;
248 470
249extern rand_gen rndm; 471extern rand_gen rndm, rmg_rndm;
472
473INTERFACE_CLASS (attachable)
474struct refcnt_base
475{
476 typedef int refcnt_t;
477 mutable refcnt_t ACC (RW, refcnt);
478
479 MTH void refcnt_inc () const { ++refcnt; }
480 MTH void refcnt_dec () const { --refcnt; }
481
482 refcnt_base () : refcnt (0) { }
483};
484
485// to avoid branches with more advanced compilers
486extern refcnt_base::refcnt_t refcnt_dummy;
250 487
251template<class T> 488template<class T>
252struct refptr 489struct refptr
253{ 490{
491 // p if not null
492 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
493
494 void refcnt_dec ()
495 {
496 if (!is_constant (p))
497 --*refcnt_ref ();
498 else if (p)
499 --p->refcnt;
500 }
501
502 void refcnt_inc ()
503 {
504 if (!is_constant (p))
505 ++*refcnt_ref ();
506 else if (p)
507 ++p->refcnt;
508 }
509
254 T *p; 510 T *p;
255 511
256 refptr () : p(0) { } 512 refptr () : p(0) { }
257 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 513 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
258 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 514 refptr (T *p) : p(p) { refcnt_inc (); }
259 ~refptr () { if (p) p->refcnt_dec (); } 515 ~refptr () { refcnt_dec (); }
260 516
261 const refptr<T> &operator =(T *o) 517 const refptr<T> &operator =(T *o)
262 { 518 {
519 // if decrementing ever destroys we need to reverse the order here
263 if (p) p->refcnt_dec (); 520 refcnt_dec ();
264 p = o; 521 p = o;
265 if (p) p->refcnt_inc (); 522 refcnt_inc ();
266
267 return *this; 523 return *this;
268 } 524 }
269 525
270 const refptr<T> &operator =(const refptr<T> o) 526 const refptr<T> &operator =(const refptr<T> &o)
271 { 527 {
272 *this = o.p; 528 *this = o.p;
273 return *this; 529 return *this;
274 } 530 }
275 531
276 T &operator * () const { return *p; } 532 T &operator * () const { return *p; }
277 T *operator ->() const { return p; } 533 T *operator ->() const { return p; }
278 534
279 operator T *() const { return p; } 535 operator T *() const { return p; }
280}; 536};
281 537
282typedef refptr<maptile> maptile_ptr; 538typedef refptr<maptile> maptile_ptr;
287 543
288struct str_hash 544struct str_hash
289{ 545{
290 std::size_t operator ()(const char *s) const 546 std::size_t operator ()(const char *s) const
291 { 547 {
292 unsigned long hash = 0; 548#if 0
549 uint32_t hash = 0;
293 550
294 /* use the one-at-a-time hash function, which supposedly is 551 /* use the one-at-a-time hash function, which supposedly is
295 * better than the djb2-like one used by perl5.005, but 552 * better than the djb2-like one used by perl5.005, but
296 * certainly is better then the bug used here before. 553 * certainly is better then the bug used here before.
297 * see http://burtleburtle.net/bob/hash/doobs.html 554 * see http://burtleburtle.net/bob/hash/doobs.html
304 } 561 }
305 562
306 hash += hash << 3; 563 hash += hash << 3;
307 hash ^= hash >> 11; 564 hash ^= hash >> 11;
308 hash += hash << 15; 565 hash += hash << 15;
566#else
567 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
568 // it is about twice as fast as the one-at-a-time one,
569 // with good distribution.
570 // FNV-1a is faster on many cpus because the multiplication
571 // runs concurrent with the looping logic.
572 uint32_t hash = 2166136261;
573
574 while (*s)
575 hash = (hash ^ *s++) * 16777619;
576#endif
309 577
310 return hash; 578 return hash;
311 } 579 }
312}; 580};
313 581
317 { 585 {
318 return !strcmp (a, b); 586 return !strcmp (a, b);
319 } 587 }
320}; 588};
321 589
590// Mostly the same as std::vector, but insert/erase can reorder
591// the elements, making append(=insert)/remove O(1) instead of O(n).
592//
593// NOTE: only some forms of erase are available
322template<class T> 594template<class T>
323struct unordered_vector : std::vector<T, slice_allocator<T> > 595struct unordered_vector : std::vector<T, slice_allocator<T> >
324{ 596{
325 typedef typename unordered_vector::iterator iterator; 597 typedef typename unordered_vector::iterator iterator;
326 598
336 { 608 {
337 erase ((unsigned int )(i - this->begin ())); 609 erase ((unsigned int )(i - this->begin ()));
338 } 610 }
339}; 611};
340 612
341template<class T, int T::* index> 613// This container blends advantages of linked lists
614// (efficiency) with vectors (random access) by
615// by using an unordered vector and storing the vector
616// index inside the object.
617//
618// + memory-efficient on most 64 bit archs
619// + O(1) insert/remove
620// + free unique (but varying) id for inserted objects
621// + cache-friendly iteration
622// - only works for pointers to structs
623//
624// NOTE: only some forms of erase/insert are available
625typedef int object_vector_index;
626
627template<class T, object_vector_index T::*indexmember>
342struct object_vector : std::vector<T *, slice_allocator<T *> > 628struct object_vector : std::vector<T *, slice_allocator<T *> >
343{ 629{
630 typedef typename object_vector::iterator iterator;
631
632 bool contains (const T *obj) const
633 {
634 return obj->*indexmember;
635 }
636
637 iterator find (const T *obj)
638 {
639 return obj->*indexmember
640 ? this->begin () + obj->*indexmember - 1
641 : this->end ();
642 }
643
644 void push_back (T *obj)
645 {
646 std::vector<T *, slice_allocator<T *> >::push_back (obj);
647 obj->*indexmember = this->size ();
648 }
649
344 void insert (T *obj) 650 void insert (T *obj)
345 { 651 {
346 assert (!(obj->*index));
347 push_back (obj); 652 push_back (obj);
348 obj->*index = this->size ();
349 } 653 }
350 654
351 void insert (T &obj) 655 void insert (T &obj)
352 { 656 {
353 insert (&obj); 657 insert (&obj);
354 } 658 }
355 659
356 void erase (T *obj) 660 void erase (T *obj)
357 { 661 {
358 assert (obj->*index);
359 int pos = obj->*index; 662 unsigned int pos = obj->*indexmember;
360 obj->*index = 0; 663 obj->*indexmember = 0;
361 664
362 if (pos < this->size ()) 665 if (pos < this->size ())
363 { 666 {
364 (*this)[pos - 1] = (*this)[this->size () - 1]; 667 (*this)[pos - 1] = (*this)[this->size () - 1];
365 (*this)[pos - 1]->*index = pos; 668 (*this)[pos - 1]->*indexmember = pos;
366 } 669 }
367 670
368 this->pop_back (); 671 this->pop_back ();
369 } 672 }
370 673
371 void erase (T &obj) 674 void erase (T &obj)
372 { 675 {
373 errase (&obj); 676 erase (&obj);
374 } 677 }
375}; 678};
376 679
377// basically does what strncpy should do, but appends "..." to strings exceeding length 680// basically does what strncpy should do, but appends "..." to strings exceeding length
378void assign (char *dst, const char *src, int maxlen); 681void assign (char *dst, const char *src, int maxlen);
384 assign ((char *)&dst, src, N); 687 assign ((char *)&dst, src, N);
385} 688}
386 689
387typedef double tstamp; 690typedef double tstamp;
388 691
389// return current time as timestampe 692// return current time as timestamp
390tstamp now (); 693tstamp now ();
391 694
392int similar_direction (int a, int b); 695int similar_direction (int a, int b);
393 696
697// like sprintf, but returns a "static" buffer
698const char *format (const char *format, ...);
699
700/////////////////////////////////////////////////////////////////////////////
701// threads, very very thin wrappers around pthreads
702
703struct thread
704{
705 pthread_t id;
706
707 void start (void *(*start_routine)(void *), void *arg = 0);
708
709 void cancel ()
710 {
711 pthread_cancel (id);
712 }
713
714 void *join ()
715 {
716 void *ret;
717
718 if (pthread_join (id, &ret))
719 cleanup ("pthread_join failed", 1);
720
721 return ret;
722 }
723};
724
725// note that mutexes are not classes
726typedef pthread_mutex_t smutex;
727
728#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
729 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
730#else
731 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
394#endif 732#endif
395 733
734#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
735#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
736#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
737
738typedef pthread_cond_t scond;
739
740#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
741#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
742#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
743#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
744
745#endif
746

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines