ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.37 by root, Thu Feb 15 15:43:36 2007 UTC vs.
Revision 1.83 by root, Tue Dec 30 07:24:16 2008 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
4//#define PREFER_MALLOC 25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
5 28
6#if __GNUC__ >= 3 29#if __GNUC__ >= 3
7# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
8#else 33#else
9# define is_constant(c) 0 34# define is_constant(c) 0
35# define expect(expr,value) (expr)
36# define prefetch(addr,rw,locality)
10#endif 37#endif
38
39#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40# define decltype(x) typeof(x)
41#endif
42
43// put into ifs if you are very sure that the expression
44// is mostly true or mosty false. note that these return
45// booleans, not the expression.
46#define expect_false(expr) expect ((expr) != 0, 0)
47#define expect_true(expr) expect ((expr) != 0, 1)
48
49#include <pthread.h>
11 50
12#include <cstddef> 51#include <cstddef>
13#include <cmath> 52#include <cmath>
14#include <new> 53#include <new>
15#include <vector> 54#include <vector>
17#include <glib.h> 56#include <glib.h>
18 57
19#include <shstr.h> 58#include <shstr.h>
20#include <traits.h> 59#include <traits.h>
21 60
61#if DEBUG_SALLOC
62# define g_slice_alloc0(s) debug_slice_alloc0(s)
63# define g_slice_alloc(s) debug_slice_alloc(s)
64# define g_slice_free1(s,p) debug_slice_free1(s,p)
65void *g_slice_alloc (unsigned long size);
66void *g_slice_alloc0 (unsigned long size);
67void g_slice_free1 (unsigned long size, void *ptr);
68#elif PREFER_MALLOC
69# define g_slice_alloc0(s) calloc (1, (s))
70# define g_slice_alloc(s) malloc ((s))
71# define g_slice_free1(s,p) free ((p))
72#endif
73
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 75#define auto(var,expr) decltype(expr) var = (expr)
24 76
25// very ugly macro that basicaly declares and initialises a variable 77// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 78// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 79// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 80// (note: works great for pointers)
29// most ugly macro I ever wrote 81// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 82#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 83
32// in range including end 84// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 85#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 87
36// in range excluding end 88// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 89#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 91
92void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 93void fork_abort (const char *msg);
41 94
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 95// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 96// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 100
101template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
102template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
103template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
104
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 105template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
49 106
107template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109
110// sign returns -1 or +1
111template<typename T>
112static inline T sign (T v) { return v < 0 ? -1 : +1; }
113// relies on 2c representation
114template<>
115inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
116
117// sign0 returns -1, 0 or +1
118template<typename T>
119static inline T sign0 (T v) { return v ? sign (v) : 0; }
120
121// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
123// div, round-up
124template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
125// div, round-down
126template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
127
128template<typename T>
129static inline T
130lerp (T val, T min_in, T max_in, T min_out, T max_out)
131{
132 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
133}
134
135// lerp, round-down
136template<typename T>
137static inline T
138lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
139{
140 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
141}
142
143// lerp, round-up
144template<typename T>
145static inline T
146lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
147{
148 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
149}
150
50// lots of stuff taken from FXT 151// lots of stuff taken from FXT
51 152
52/* Rotate right. This is used in various places for checksumming */ 153/* Rotate right. This is used in various places for checksumming */
53//TODO: this sucks, use a better checksum algo 154//TODO: that sucks, use a better checksum algo
54static inline uint32_t 155static inline uint32_t
55rotate_right (uint32_t c) 156rotate_right (uint32_t c, uint32_t count = 1)
56{ 157{
57 return (c << 31) | (c >> 1); 158 return (c << (32 - count)) | (c >> count);
159}
160
161static inline uint32_t
162rotate_left (uint32_t c, uint32_t count = 1)
163{
164 return (c >> (32 - count)) | (c << count);
58} 165}
59 166
60// Return abs(a-b) 167// Return abs(a-b)
61// Both a and b must not have the most significant bit set 168// Both a and b must not have the most significant bit set
62static inline uint32_t 169static inline uint32_t
124absdir (int d) 231absdir (int d)
125{ 232{
126 return ((d - 1) & 7) + 1; 233 return ((d - 1) & 7) + 1;
127} 234}
128 235
236extern ssize_t slice_alloc; // statistics
237
238void *salloc_ (int n) throw (std::bad_alloc);
239void *salloc_ (int n, void *src) throw (std::bad_alloc);
240
241// strictly the same as g_slice_alloc, but never returns 0
242template<typename T>
243inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
244
245// also copies src into the new area, like "memdup"
246// if src is 0, clears the memory
247template<typename T>
248inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
249
250// clears the memory
251template<typename T>
252inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
253
254// for symmetry
255template<typename T>
256inline void sfree (T *ptr, int n = 1) throw ()
257{
258 if (expect_true (ptr))
259 {
260 slice_alloc -= n * sizeof (T);
261 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
262 g_slice_free1 (n * sizeof (T), (void *)ptr);
263 assert (slice_alloc >= 0);//D
264 }
265}
266
267// nulls the pointer
268template<typename T>
269inline void sfree0 (T *&ptr, int n = 1) throw ()
270{
271 sfree<T> (ptr, n);
272 ptr = 0;
273}
274
129// makes dynamically allocated objects zero-initialised 275// makes dynamically allocated objects zero-initialised
130struct zero_initialised 276struct zero_initialised
131{ 277{
132 void *operator new (size_t s, void *p) 278 void *operator new (size_t s, void *p)
133 { 279 {
135 return p; 281 return p;
136 } 282 }
137 283
138 void *operator new (size_t s) 284 void *operator new (size_t s)
139 { 285 {
140 return g_slice_alloc0 (s); 286 return salloc0<char> (s);
141 } 287 }
142 288
143 void *operator new[] (size_t s) 289 void *operator new[] (size_t s)
144 { 290 {
145 return g_slice_alloc0 (s); 291 return salloc0<char> (s);
146 } 292 }
147 293
148 void operator delete (void *p, size_t s) 294 void operator delete (void *p, size_t s)
149 { 295 {
150 g_slice_free1 (s, p); 296 sfree ((char *)p, s);
151 } 297 }
152 298
153 void operator delete[] (void *p, size_t s) 299 void operator delete[] (void *p, size_t s)
154 { 300 {
155 g_slice_free1 (s, p); 301 sfree ((char *)p, s);
156 } 302 }
157}; 303};
158 304
159void *salloc_ (int n) throw (std::bad_alloc); 305// makes dynamically allocated objects zero-initialised
160void *salloc_ (int n, void *src) throw (std::bad_alloc); 306struct slice_allocated
161
162// strictly the same as g_slice_alloc, but never returns 0
163template<typename T>
164inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
165
166// also copies src into the new area, like "memdup"
167// if src is 0, clears the memory
168template<typename T>
169inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
170
171// clears the memory
172template<typename T>
173inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
174
175// for symmetry
176template<typename T>
177inline void sfree (T *ptr, int n = 1) throw ()
178{ 307{
179#ifdef PREFER_MALLOC 308 void *operator new (size_t s, void *p)
180 free (ptr); 309 {
181#else 310 return p;
182 g_slice_free1 (n * sizeof (T), (void *)ptr); 311 }
183#endif 312
184} 313 void *operator new (size_t s)
314 {
315 return salloc<char> (s);
316 }
317
318 void *operator new[] (size_t s)
319 {
320 return salloc<char> (s);
321 }
322
323 void operator delete (void *p, size_t s)
324 {
325 sfree ((char *)p, s);
326 }
327
328 void operator delete[] (void *p, size_t s)
329 {
330 sfree ((char *)p, s);
331 }
332};
185 333
186// a STL-compatible allocator that uses g_slice 334// a STL-compatible allocator that uses g_slice
187// boy, this is verbose 335// boy, this is verbose
188template<typename Tp> 336template<typename Tp>
189struct slice_allocator 337struct slice_allocator
201 { 349 {
202 typedef slice_allocator<U> other; 350 typedef slice_allocator<U> other;
203 }; 351 };
204 352
205 slice_allocator () throw () { } 353 slice_allocator () throw () { }
206 slice_allocator (const slice_allocator &o) throw () { } 354 slice_allocator (const slice_allocator &) throw () { }
207 template<typename Tp2> 355 template<typename Tp2>
208 slice_allocator (const slice_allocator<Tp2> &) throw () { } 356 slice_allocator (const slice_allocator<Tp2> &) throw () { }
209 357
210 ~slice_allocator () { } 358 ~slice_allocator () { }
211 359
220 void deallocate (pointer p, size_type n) 368 void deallocate (pointer p, size_type n)
221 { 369 {
222 sfree<Tp> (p, n); 370 sfree<Tp> (p, n);
223 } 371 }
224 372
225 size_type max_size ()const throw () 373 size_type max_size () const throw ()
226 { 374 {
227 return size_t (-1) / sizeof (Tp); 375 return size_t (-1) / sizeof (Tp);
228 } 376 }
229 377
230 void construct (pointer p, const Tp &val) 378 void construct (pointer p, const Tp &val)
241// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 389// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
242// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 390// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
243// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 391// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
244struct tausworthe_random_generator 392struct tausworthe_random_generator
245{ 393{
246 // generator
247 uint32_t state [4]; 394 uint32_t state [4];
248 395
249 void operator =(const tausworthe_random_generator &src) 396 void operator =(const tausworthe_random_generator &src)
250 { 397 {
251 state [0] = src.state [0]; 398 state [0] = src.state [0];
254 state [3] = src.state [3]; 401 state [3] = src.state [3];
255 } 402 }
256 403
257 void seed (uint32_t seed); 404 void seed (uint32_t seed);
258 uint32_t next (); 405 uint32_t next ();
406};
259 407
260 // uniform distribution 408// Xorshift RNGs, George Marsaglia
409// http://www.jstatsoft.org/v08/i14/paper
410// this one is about 40% faster than the tausworthe one above (i.e. not much),
411// despite the inlining, and has the issue of only creating 2**32-1 numbers.
412struct xorshift_random_generator
413{
414 uint32_t x, y;
415
416 void operator =(const xorshift_random_generator &src)
417 {
418 x = src.x;
419 y = src.y;
420 }
421
422 void seed (uint32_t seed)
423 {
424 x = seed;
425 y = seed * 69069U;
426 }
427
428 uint32_t next ()
429 {
430 uint32_t t = x ^ (x << 10);
431 x = y;
432 y = y ^ (y >> 13) ^ t ^ (t >> 10);
433 return y;
434 }
435};
436
437template<class generator>
438struct random_number_generator : generator
439{
440 // uniform distribution, 0 .. max (0, num - 1)
261 uint32_t operator ()(uint32_t r_max) 441 uint32_t operator ()(uint32_t num)
262 { 442 {
263 return is_constant (r_max) 443 return !is_constant (num) ? get_range (num) // non-constant
264 ? this->next () % r_max 444 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
265 : get_range (r_max); 445 : this->next () & (num - 1); // constant, power-of-two
266 } 446 }
267 447
268 // return a number within (min .. max) 448 // return a number within (min .. max)
269 int operator () (int r_min, int r_max) 449 int operator () (int r_min, int r_max)
270 { 450 {
271 return is_constant (r_min) && is_constant (r_max) 451 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
272 ? r_min + (*this) (max (r_max - r_min + 1, 1)) 452 ? r_min + operator ()(r_max - r_min + 1)
273 : get_range (r_min, r_max); 453 : get_range (r_min, r_max);
274 } 454 }
275 455
276 double operator ()() 456 double operator ()()
277 { 457 {
281protected: 461protected:
282 uint32_t get_range (uint32_t r_max); 462 uint32_t get_range (uint32_t r_max);
283 int get_range (int r_min, int r_max); 463 int get_range (int r_min, int r_max);
284}; 464};
285 465
286typedef tausworthe_random_generator rand_gen; 466typedef random_number_generator<tausworthe_random_generator> rand_gen;
287 467
288extern rand_gen rndm; 468extern rand_gen rndm, rmg_rndm;
469
470INTERFACE_CLASS (attachable)
471struct refcnt_base
472{
473 typedef int refcnt_t;
474 mutable refcnt_t ACC (RW, refcnt);
475
476 MTH void refcnt_inc () const { ++refcnt; }
477 MTH void refcnt_dec () const { --refcnt; }
478
479 refcnt_base () : refcnt (0) { }
480};
481
482// to avoid branches with more advanced compilers
483extern refcnt_base::refcnt_t refcnt_dummy;
289 484
290template<class T> 485template<class T>
291struct refptr 486struct refptr
292{ 487{
488 // p if not null
489 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
490
491 void refcnt_dec ()
492 {
493 if (!is_constant (p))
494 --*refcnt_ref ();
495 else if (p)
496 --p->refcnt;
497 }
498
499 void refcnt_inc ()
500 {
501 if (!is_constant (p))
502 ++*refcnt_ref ();
503 else if (p)
504 ++p->refcnt;
505 }
506
293 T *p; 507 T *p;
294 508
295 refptr () : p(0) { } 509 refptr () : p(0) { }
296 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 510 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
297 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 511 refptr (T *p) : p(p) { refcnt_inc (); }
298 ~refptr () { if (p) p->refcnt_dec (); } 512 ~refptr () { refcnt_dec (); }
299 513
300 const refptr<T> &operator =(T *o) 514 const refptr<T> &operator =(T *o)
301 { 515 {
516 // if decrementing ever destroys we need to reverse the order here
302 if (p) p->refcnt_dec (); 517 refcnt_dec ();
303 p = o; 518 p = o;
304 if (p) p->refcnt_inc (); 519 refcnt_inc ();
305
306 return *this; 520 return *this;
307 } 521 }
308 522
309 const refptr<T> &operator =(const refptr<T> o) 523 const refptr<T> &operator =(const refptr<T> &o)
310 { 524 {
311 *this = o.p; 525 *this = o.p;
312 return *this; 526 return *this;
313 } 527 }
314 528
315 T &operator * () const { return *p; } 529 T &operator * () const { return *p; }
316 T *operator ->() const { return p; } 530 T *operator ->() const { return p; }
317 531
318 operator T *() const { return p; } 532 operator T *() const { return p; }
319}; 533};
320 534
321typedef refptr<maptile> maptile_ptr; 535typedef refptr<maptile> maptile_ptr;
356 { 570 {
357 return !strcmp (a, b); 571 return !strcmp (a, b);
358 } 572 }
359}; 573};
360 574
575// Mostly the same as std::vector, but insert/erase can reorder
576// the elements, making append(=insert)/remove O(1) instead of O(n).
577//
578// NOTE: only some forms of erase are available
361template<class T> 579template<class T>
362struct unordered_vector : std::vector<T, slice_allocator<T> > 580struct unordered_vector : std::vector<T, slice_allocator<T> >
363{ 581{
364 typedef typename unordered_vector::iterator iterator; 582 typedef typename unordered_vector::iterator iterator;
365 583
375 { 593 {
376 erase ((unsigned int )(i - this->begin ())); 594 erase ((unsigned int )(i - this->begin ()));
377 } 595 }
378}; 596};
379 597
380template<class T, int T::* index> 598// This container blends advantages of linked lists
599// (efficiency) with vectors (random access) by
600// by using an unordered vector and storing the vector
601// index inside the object.
602//
603// + memory-efficient on most 64 bit archs
604// + O(1) insert/remove
605// + free unique (but varying) id for inserted objects
606// + cache-friendly iteration
607// - only works for pointers to structs
608//
609// NOTE: only some forms of erase/insert are available
610typedef int object_vector_index;
611
612template<class T, object_vector_index T::*indexmember>
381struct object_vector : std::vector<T *, slice_allocator<T *> > 613struct object_vector : std::vector<T *, slice_allocator<T *> >
382{ 614{
615 typedef typename object_vector::iterator iterator;
616
617 bool contains (const T *obj) const
618 {
619 return obj->*indexmember;
620 }
621
622 iterator find (const T *obj)
623 {
624 return obj->*indexmember
625 ? this->begin () + obj->*indexmember - 1
626 : this->end ();
627 }
628
629 void push_back (T *obj)
630 {
631 std::vector<T *, slice_allocator<T *> >::push_back (obj);
632 obj->*indexmember = this->size ();
633 }
634
383 void insert (T *obj) 635 void insert (T *obj)
384 { 636 {
385 assert (!(obj->*index));
386 push_back (obj); 637 push_back (obj);
387 obj->*index = this->size ();
388 } 638 }
389 639
390 void insert (T &obj) 640 void insert (T &obj)
391 { 641 {
392 insert (&obj); 642 insert (&obj);
393 } 643 }
394 644
395 void erase (T *obj) 645 void erase (T *obj)
396 { 646 {
397 assert (obj->*index);
398 int pos = obj->*index; 647 unsigned int pos = obj->*indexmember;
399 obj->*index = 0; 648 obj->*indexmember = 0;
400 649
401 if (pos < this->size ()) 650 if (pos < this->size ())
402 { 651 {
403 (*this)[pos - 1] = (*this)[this->size () - 1]; 652 (*this)[pos - 1] = (*this)[this->size () - 1];
404 (*this)[pos - 1]->*index = pos; 653 (*this)[pos - 1]->*indexmember = pos;
405 } 654 }
406 655
407 this->pop_back (); 656 this->pop_back ();
408 } 657 }
409 658
410 void erase (T &obj) 659 void erase (T &obj)
411 { 660 {
412 errase (&obj); 661 erase (&obj);
413 } 662 }
414}; 663};
415 664
416// basically does what strncpy should do, but appends "..." to strings exceeding length 665// basically does what strncpy should do, but appends "..." to strings exceeding length
417void assign (char *dst, const char *src, int maxlen); 666void assign (char *dst, const char *src, int maxlen);
423 assign ((char *)&dst, src, N); 672 assign ((char *)&dst, src, N);
424} 673}
425 674
426typedef double tstamp; 675typedef double tstamp;
427 676
428// return current time as timestampe 677// return current time as timestamp
429tstamp now (); 678tstamp now ();
430 679
431int similar_direction (int a, int b); 680int similar_direction (int a, int b);
432 681
682// like sprintf, but returns a "static" buffer
683const char *format (const char *format, ...);
684
685/////////////////////////////////////////////////////////////////////////////
686// threads, very very thin wrappers around pthreads
687
688struct thread
689{
690 pthread_t id;
691
692 void start (void *(*start_routine)(void *), void *arg = 0);
693
694 void cancel ()
695 {
696 pthread_cancel (id);
697 }
698
699 void *join ()
700 {
701 void *ret;
702
703 if (pthread_join (id, &ret))
704 cleanup ("pthread_join failed", 1);
705
706 return ret;
707 }
708};
709
710// note that mutexes are not classes
711typedef pthread_mutex_t smutex;
712
713#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
714 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
715#else
716 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
433#endif 717#endif
434 718
719#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
720#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
721#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
722
723typedef pthread_cond_t scond;
724
725#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
726#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
727#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
728#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
729
730#endif
731

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines