ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.45 by root, Sat May 26 15:44:05 2007 UTC vs.
Revision 1.92 by root, Tue Oct 20 05:57:08 2009 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
27#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
28#define PREFER_MALLOC 0 // use malloc and not the slice allocator
5 29
6#if __GNUC__ >= 3 30#if __GNUC__ >= 3
7# define is_constant(c) __builtin_constant_p (c) 31# define is_constant(c) __builtin_constant_p (c)
8# define expect(expr,value) __builtin_expect ((expr),(value)) 32# define expect(expr,value) __builtin_expect ((expr),(value))
9# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) 33# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
34# define noinline __attribute__((__noinline__))
10#else 35#else
11# define is_constant(c) 0 36# define is_constant(c) 0
12# define expect(expr,value) (expr) 37# define expect(expr,value) (expr)
13# define prefetch(addr,rw,locality) 38# define prefetch(addr,rw,locality)
39# define noinline
40#endif
41
42#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
43# define decltype(x) typeof(x)
14#endif 44#endif
15 45
16// put into ifs if you are very sure that the expression 46// put into ifs if you are very sure that the expression
17// is mostly true or mosty false. note that these return 47// is mostly true or mosty false. note that these return
18// booleans, not the expression. 48// booleans, not the expression.
19#define expect_false(expr) expect ((expr) != 0, 0) 49#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
20#define expect_true(expr) expect ((expr) != 0, 1) 50#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
51
52#include <pthread.h>
21 53
22#include <cstddef> 54#include <cstddef>
23#include <cmath> 55#include <cmath>
24#include <new> 56#include <new>
25#include <vector> 57#include <vector>
27#include <glib.h> 59#include <glib.h>
28 60
29#include <shstr.h> 61#include <shstr.h>
30#include <traits.h> 62#include <traits.h>
31 63
64#if DEBUG_SALLOC
65# define g_slice_alloc0(s) debug_slice_alloc0(s)
66# define g_slice_alloc(s) debug_slice_alloc(s)
67# define g_slice_free1(s,p) debug_slice_free1(s,p)
68void *g_slice_alloc (unsigned long size);
69void *g_slice_alloc0 (unsigned long size);
70void g_slice_free1 (unsigned long size, void *ptr);
71#elif PREFER_MALLOC
72# define g_slice_alloc0(s) calloc (1, (s))
73# define g_slice_alloc(s) malloc ((s))
74# define g_slice_free1(s,p) free ((p))
75#endif
76
32// use a gcc extension for auto declarations until ISO C++ sanctifies them 77// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
33#define auto(var,expr) typeof(expr) var = (expr) 78#define auto(var,expr) decltype(expr) var = (expr)
34 79
35// very ugly macro that basicaly declares and initialises a variable 80// very ugly macro that basically declares and initialises a variable
36// that is in scope for the next statement only 81// that is in scope for the next statement only
37// works only for stuff that can be assigned 0 and converts to false 82// works only for stuff that can be assigned 0 and converts to false
38// (note: works great for pointers) 83// (note: works great for pointers)
39// most ugly macro I ever wrote 84// most ugly macro I ever wrote
40#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 85#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
41 86
42// in range including end 87// in range including end
43#define IN_RANGE_INC(val,beg,end) \ 88#define IN_RANGE_INC(val,beg,end) \
44 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 89 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
45 90
46// in range excluding end 91// in range excluding end
47#define IN_RANGE_EXC(val,beg,end) \ 92#define IN_RANGE_EXC(val,beg,end) \
48 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 93 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
49 94
95void cleanup (const char *cause, bool make_core = false);
50void fork_abort (const char *msg); 96void fork_abort (const char *msg);
51 97
52// rationale for using (U) not (T) is to reduce signed/unsigned issues, 98// rationale for using (U) not (T) is to reduce signed/unsigned issues,
53// as a is often a constant while b is the variable. it is still a bug, though. 99// as a is often a constant while b is the variable. it is still a bug, though.
54template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 100template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
55template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 101template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
56template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 102template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
57 103
104template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
105template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
106template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
107
58template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 108template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
59 109
110template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
111template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
112
113// sign returns -1 or +1
114template<typename T>
115static inline T sign (T v) { return v < 0 ? -1 : +1; }
116// relies on 2c representation
117template<>
118inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
119
120// sign0 returns -1, 0 or +1
121template<typename T>
122static inline T sign0 (T v) { return v ? sign (v) : 0; }
123
124// div* only work correctly for div > 0
125// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126template<typename T> static inline T div (T val, T div)
127{
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129}
130// div, round-up
131template<typename T> static inline T div_ru (T val, T div)
132{
133 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
134}
135// div, round-down
136template<typename T> static inline T div_rd (T val, T div)
137{
138 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
139}
140
141// lerp* only work correctly for min_in < max_in
142// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
60template<typename T> 143template<typename T>
61static inline T 144static inline T
62lerp (T val, T min_in, T max_in, T min_out, T max_out) 145lerp (T val, T min_in, T max_in, T min_out, T max_out)
63{ 146{
64 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 147 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-down
151template<typename T>
152static inline T
153lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156}
157
158// lerp, round-up
159template<typename T>
160static inline T
161lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
162{
163 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
65} 164}
66 165
67// lots of stuff taken from FXT 166// lots of stuff taken from FXT
68 167
69/* Rotate right. This is used in various places for checksumming */ 168/* Rotate right. This is used in various places for checksumming */
113// on modern cpus 212// on modern cpus
114inline int 213inline int
115isqrt (int n) 214isqrt (int n)
116{ 215{
117 return (int)sqrtf ((float)n); 216 return (int)sqrtf ((float)n);
217}
218
219// this is kind of like the ^^ operator, if it would exist, without sequence point.
220// more handy than it looks like, due to the implicit !! done on its arguments
221inline bool
222logical_xor (bool a, bool b)
223{
224 return a != b;
225}
226
227inline bool
228logical_implies (bool a, bool b)
229{
230 return a <= b;
118} 231}
119 232
120// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 233// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
121#if 0 234#if 0
122// and has a max. error of 6 in the range -100..+100. 235// and has a max. error of 6 in the range -100..+100.
147absdir (int d) 260absdir (int d)
148{ 261{
149 return ((d - 1) & 7) + 1; 262 return ((d - 1) & 7) + 1;
150} 263}
151 264
265extern ssize_t slice_alloc; // statistics
266
267void *salloc_ (int n) throw (std::bad_alloc);
268void *salloc_ (int n, void *src) throw (std::bad_alloc);
269
270// strictly the same as g_slice_alloc, but never returns 0
271template<typename T>
272inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
273
274// also copies src into the new area, like "memdup"
275// if src is 0, clears the memory
276template<typename T>
277inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
278
279// clears the memory
280template<typename T>
281inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
282
283// for symmetry
284template<typename T>
285inline void sfree (T *ptr, int n = 1) throw ()
286{
287 if (expect_true (ptr))
288 {
289 slice_alloc -= n * sizeof (T);
290 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
291 g_slice_free1 (n * sizeof (T), (void *)ptr);
292 assert (slice_alloc >= 0);//D
293 }
294}
295
296// nulls the pointer
297template<typename T>
298inline void sfree0 (T *&ptr, int n = 1) throw ()
299{
300 sfree<T> (ptr, n);
301 ptr = 0;
302}
303
152// makes dynamically allocated objects zero-initialised 304// makes dynamically allocated objects zero-initialised
153struct zero_initialised 305struct zero_initialised
154{ 306{
155 void *operator new (size_t s, void *p) 307 void *operator new (size_t s, void *p)
156 { 308 {
158 return p; 310 return p;
159 } 311 }
160 312
161 void *operator new (size_t s) 313 void *operator new (size_t s)
162 { 314 {
163 return g_slice_alloc0 (s); 315 return salloc0<char> (s);
164 } 316 }
165 317
166 void *operator new[] (size_t s) 318 void *operator new[] (size_t s)
167 { 319 {
168 return g_slice_alloc0 (s); 320 return salloc0<char> (s);
169 } 321 }
170 322
171 void operator delete (void *p, size_t s) 323 void operator delete (void *p, size_t s)
172 { 324 {
173 g_slice_free1 (s, p); 325 sfree ((char *)p, s);
174 } 326 }
175 327
176 void operator delete[] (void *p, size_t s) 328 void operator delete[] (void *p, size_t s)
177 { 329 {
178 g_slice_free1 (s, p); 330 sfree ((char *)p, s);
179 } 331 }
180}; 332};
181 333
182void *salloc_ (int n) throw (std::bad_alloc); 334// makes dynamically allocated objects zero-initialised
183void *salloc_ (int n, void *src) throw (std::bad_alloc); 335struct slice_allocated
184
185// strictly the same as g_slice_alloc, but never returns 0
186template<typename T>
187inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
188
189// also copies src into the new area, like "memdup"
190// if src is 0, clears the memory
191template<typename T>
192inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
193
194// clears the memory
195template<typename T>
196inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
197
198// for symmetry
199template<typename T>
200inline void sfree (T *ptr, int n = 1) throw ()
201{ 336{
202#ifdef PREFER_MALLOC 337 void *operator new (size_t s, void *p)
203 free (ptr); 338 {
204#else 339 return p;
205 g_slice_free1 (n * sizeof (T), (void *)ptr); 340 }
206#endif 341
207} 342 void *operator new (size_t s)
343 {
344 return salloc<char> (s);
345 }
346
347 void *operator new[] (size_t s)
348 {
349 return salloc<char> (s);
350 }
351
352 void operator delete (void *p, size_t s)
353 {
354 sfree ((char *)p, s);
355 }
356
357 void operator delete[] (void *p, size_t s)
358 {
359 sfree ((char *)p, s);
360 }
361};
208 362
209// a STL-compatible allocator that uses g_slice 363// a STL-compatible allocator that uses g_slice
210// boy, this is verbose 364// boy, this is verbose
211template<typename Tp> 365template<typename Tp>
212struct slice_allocator 366struct slice_allocator
224 { 378 {
225 typedef slice_allocator<U> other; 379 typedef slice_allocator<U> other;
226 }; 380 };
227 381
228 slice_allocator () throw () { } 382 slice_allocator () throw () { }
229 slice_allocator (const slice_allocator &o) throw () { } 383 slice_allocator (const slice_allocator &) throw () { }
230 template<typename Tp2> 384 template<typename Tp2>
231 slice_allocator (const slice_allocator<Tp2> &) throw () { } 385 slice_allocator (const slice_allocator<Tp2> &) throw () { }
232 386
233 ~slice_allocator () { } 387 ~slice_allocator () { }
234 388
243 void deallocate (pointer p, size_type n) 397 void deallocate (pointer p, size_type n)
244 { 398 {
245 sfree<Tp> (p, n); 399 sfree<Tp> (p, n);
246 } 400 }
247 401
248 size_type max_size ()const throw () 402 size_type max_size () const throw ()
249 { 403 {
250 return size_t (-1) / sizeof (Tp); 404 return size_t (-1) / sizeof (Tp);
251 } 405 }
252 406
253 void construct (pointer p, const Tp &val) 407 void construct (pointer p, const Tp &val)
264// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 418// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
265// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 419// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
266// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 420// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
267struct tausworthe_random_generator 421struct tausworthe_random_generator
268{ 422{
269 // generator
270 uint32_t state [4]; 423 uint32_t state [4];
271 424
272 void operator =(const tausworthe_random_generator &src) 425 void operator =(const tausworthe_random_generator &src)
273 { 426 {
274 state [0] = src.state [0]; 427 state [0] = src.state [0];
277 state [3] = src.state [3]; 430 state [3] = src.state [3];
278 } 431 }
279 432
280 void seed (uint32_t seed); 433 void seed (uint32_t seed);
281 uint32_t next (); 434 uint32_t next ();
435};
282 436
283 // uniform distribution 437// Xorshift RNGs, George Marsaglia
438// http://www.jstatsoft.org/v08/i14/paper
439// this one is about 40% faster than the tausworthe one above (i.e. not much),
440// despite the inlining, and has the issue of only creating 2**32-1 numbers.
441// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
442struct xorshift_random_generator
443{
444 uint32_t x, y;
445
446 void operator =(const xorshift_random_generator &src)
447 {
448 x = src.x;
449 y = src.y;
450 }
451
452 void seed (uint32_t seed)
453 {
454 x = seed;
455 y = seed * 69069U;
456 }
457
458 uint32_t next ()
459 {
460 uint32_t t = x ^ (x << 10);
461 x = y;
462 y = y ^ (y >> 13) ^ t ^ (t >> 10);
463 return y;
464 }
465};
466
467template<class generator>
468struct random_number_generator : generator
469{
470 // uniform distribution, 0 .. max (0, num - 1)
284 uint32_t operator ()(uint32_t num) 471 uint32_t operator ()(uint32_t num)
285 { 472 {
286 return is_constant (num) 473 return !is_constant (num) ? get_range (num) // non-constant
287 ? (next () * (uint64_t)num) >> 32U 474 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
288 : get_range (num); 475 : this->next () & (num - 1); // constant, power-of-two
289 } 476 }
290 477
291 // return a number within (min .. max) 478 // return a number within (min .. max)
292 int operator () (int r_min, int r_max) 479 int operator () (int r_min, int r_max)
293 { 480 {
304protected: 491protected:
305 uint32_t get_range (uint32_t r_max); 492 uint32_t get_range (uint32_t r_max);
306 int get_range (int r_min, int r_max); 493 int get_range (int r_min, int r_max);
307}; 494};
308 495
309typedef tausworthe_random_generator rand_gen; 496typedef random_number_generator<tausworthe_random_generator> rand_gen;
310 497
311extern rand_gen rndm; 498extern rand_gen rndm, rmg_rndm;
499
500INTERFACE_CLASS (attachable)
501struct refcnt_base
502{
503 typedef int refcnt_t;
504 mutable refcnt_t ACC (RW, refcnt);
505
506 MTH void refcnt_inc () const { ++refcnt; }
507 MTH void refcnt_dec () const { --refcnt; }
508
509 refcnt_base () : refcnt (0) { }
510};
511
512// to avoid branches with more advanced compilers
513extern refcnt_base::refcnt_t refcnt_dummy;
312 514
313template<class T> 515template<class T>
314struct refptr 516struct refptr
315{ 517{
518 // p if not null
519 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
520
521 void refcnt_dec ()
522 {
523 if (!is_constant (p))
524 --*refcnt_ref ();
525 else if (p)
526 --p->refcnt;
527 }
528
529 void refcnt_inc ()
530 {
531 if (!is_constant (p))
532 ++*refcnt_ref ();
533 else if (p)
534 ++p->refcnt;
535 }
536
316 T *p; 537 T *p;
317 538
318 refptr () : p(0) { } 539 refptr () : p(0) { }
319 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 540 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
320 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 541 refptr (T *p) : p(p) { refcnt_inc (); }
321 ~refptr () { if (p) p->refcnt_dec (); } 542 ~refptr () { refcnt_dec (); }
322 543
323 const refptr<T> &operator =(T *o) 544 const refptr<T> &operator =(T *o)
324 { 545 {
546 // if decrementing ever destroys we need to reverse the order here
325 if (p) p->refcnt_dec (); 547 refcnt_dec ();
326 p = o; 548 p = o;
327 if (p) p->refcnt_inc (); 549 refcnt_inc ();
328
329 return *this; 550 return *this;
330 } 551 }
331 552
332 const refptr<T> &operator =(const refptr<T> o) 553 const refptr<T> &operator =(const refptr<T> &o)
333 { 554 {
334 *this = o.p; 555 *this = o.p;
335 return *this; 556 return *this;
336 } 557 }
337 558
338 T &operator * () const { return *p; } 559 T &operator * () const { return *p; }
339 T *operator ->() const { return p; } 560 T *operator ->() const { return p; }
340 561
341 operator T *() const { return p; } 562 operator T *() const { return p; }
342}; 563};
343 564
344typedef refptr<maptile> maptile_ptr; 565typedef refptr<maptile> maptile_ptr;
349 570
350struct str_hash 571struct str_hash
351{ 572{
352 std::size_t operator ()(const char *s) const 573 std::size_t operator ()(const char *s) const
353 { 574 {
354 unsigned long hash = 0; 575#if 0
576 uint32_t hash = 0;
355 577
356 /* use the one-at-a-time hash function, which supposedly is 578 /* use the one-at-a-time hash function, which supposedly is
357 * better than the djb2-like one used by perl5.005, but 579 * better than the djb2-like one used by perl5.005, but
358 * certainly is better then the bug used here before. 580 * certainly is better then the bug used here before.
359 * see http://burtleburtle.net/bob/hash/doobs.html 581 * see http://burtleburtle.net/bob/hash/doobs.html
366 } 588 }
367 589
368 hash += hash << 3; 590 hash += hash << 3;
369 hash ^= hash >> 11; 591 hash ^= hash >> 11;
370 hash += hash << 15; 592 hash += hash << 15;
593#else
594 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
595 // it is about twice as fast as the one-at-a-time one,
596 // with good distribution.
597 // FNV-1a is faster on many cpus because the multiplication
598 // runs concurrent with the looping logic.
599 uint32_t hash = 2166136261;
600
601 while (*s)
602 hash = (hash ^ *s++) * 16777619;
603#endif
371 604
372 return hash; 605 return hash;
373 } 606 }
374}; 607};
375 608
379 { 612 {
380 return !strcmp (a, b); 613 return !strcmp (a, b);
381 } 614 }
382}; 615};
383 616
617// Mostly the same as std::vector, but insert/erase can reorder
618// the elements, making append(=insert)/remove O(1) instead of O(n).
619//
620// NOTE: only some forms of erase are available
384template<class T> 621template<class T>
385struct unordered_vector : std::vector<T, slice_allocator<T> > 622struct unordered_vector : std::vector<T, slice_allocator<T> >
386{ 623{
387 typedef typename unordered_vector::iterator iterator; 624 typedef typename unordered_vector::iterator iterator;
388 625
398 { 635 {
399 erase ((unsigned int )(i - this->begin ())); 636 erase ((unsigned int )(i - this->begin ()));
400 } 637 }
401}; 638};
402 639
403template<class T, int T::* index> 640// This container blends advantages of linked lists
641// (efficiency) with vectors (random access) by
642// by using an unordered vector and storing the vector
643// index inside the object.
644//
645// + memory-efficient on most 64 bit archs
646// + O(1) insert/remove
647// + free unique (but varying) id for inserted objects
648// + cache-friendly iteration
649// - only works for pointers to structs
650//
651// NOTE: only some forms of erase/insert are available
652typedef int object_vector_index;
653
654template<class T, object_vector_index T::*indexmember>
404struct object_vector : std::vector<T *, slice_allocator<T *> > 655struct object_vector : std::vector<T *, slice_allocator<T *> >
405{ 656{
657 typedef typename object_vector::iterator iterator;
658
659 bool contains (const T *obj) const
660 {
661 return obj->*indexmember;
662 }
663
664 iterator find (const T *obj)
665 {
666 return obj->*indexmember
667 ? this->begin () + obj->*indexmember - 1
668 : this->end ();
669 }
670
671 void push_back (T *obj)
672 {
673 std::vector<T *, slice_allocator<T *> >::push_back (obj);
674 obj->*indexmember = this->size ();
675 }
676
406 void insert (T *obj) 677 void insert (T *obj)
407 { 678 {
408 assert (!(obj->*index));
409 push_back (obj); 679 push_back (obj);
410 obj->*index = this->size ();
411 } 680 }
412 681
413 void insert (T &obj) 682 void insert (T &obj)
414 { 683 {
415 insert (&obj); 684 insert (&obj);
416 } 685 }
417 686
418 void erase (T *obj) 687 void erase (T *obj)
419 { 688 {
420 assert (obj->*index);
421 unsigned int pos = obj->*index; 689 unsigned int pos = obj->*indexmember;
422 obj->*index = 0; 690 obj->*indexmember = 0;
423 691
424 if (pos < this->size ()) 692 if (pos < this->size ())
425 { 693 {
426 (*this)[pos - 1] = (*this)[this->size () - 1]; 694 (*this)[pos - 1] = (*this)[this->size () - 1];
427 (*this)[pos - 1]->*index = pos; 695 (*this)[pos - 1]->*indexmember = pos;
428 } 696 }
429 697
430 this->pop_back (); 698 this->pop_back ();
431 } 699 }
432 700
433 void erase (T &obj) 701 void erase (T &obj)
434 { 702 {
435 errase (&obj); 703 erase (&obj);
436 } 704 }
437}; 705};
438 706
439// basically does what strncpy should do, but appends "..." to strings exceeding length 707// basically does what strncpy should do, but appends "..." to strings exceeding length
708// returns the number of bytes actually used (including \0)
440void assign (char *dst, const char *src, int maxlen); 709int assign (char *dst, const char *src, int maxsize);
441 710
442// type-safe version of assign 711// type-safe version of assign
443template<int N> 712template<int N>
444inline void assign (char (&dst)[N], const char *src) 713inline int assign (char (&dst)[N], const char *src)
445{ 714{
446 assign ((char *)&dst, src, N); 715 return assign ((char *)&dst, src, N);
447} 716}
448 717
449typedef double tstamp; 718typedef double tstamp;
450 719
451// return current time as timestampe 720// return current time as timestamp
452tstamp now (); 721tstamp now ();
453 722
454int similar_direction (int a, int b); 723int similar_direction (int a, int b);
455 724
456// like printf, but returns a std::string 725// like v?sprintf, but returns a "static" buffer
726char *vformat (const char *format, va_list ap);
457const std::string format (const char *format, ...); 727char *format (const char *format, ...);
458 728
729// safety-check player input which will become object->msg
730bool msg_is_safe (const char *msg);
731
732/////////////////////////////////////////////////////////////////////////////
733// threads, very very thin wrappers around pthreads
734
735struct thread
736{
737 pthread_t id;
738
739 void start (void *(*start_routine)(void *), void *arg = 0);
740
741 void cancel ()
742 {
743 pthread_cancel (id);
744 }
745
746 void *join ()
747 {
748 void *ret;
749
750 if (pthread_join (id, &ret))
751 cleanup ("pthread_join failed", 1);
752
753 return ret;
754 }
755};
756
757// note that mutexes are not classes
758typedef pthread_mutex_t smutex;
759
760#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
761 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
762#else
763 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
459#endif 764#endif
460 765
766#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
767#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
768#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
769
770typedef pthread_cond_t scond;
771
772#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
773#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
774#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
775#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
776
777#endif
778

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines