ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.41 by root, Sat Apr 21 22:57:16 2007 UTC vs.
Revision 1.102 by root, Thu Apr 29 12:24:04 2010 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#include <compiler.h>
5 27
6#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#else 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define is_constant(c) 0 31
10#endif 32#include <pthread.h>
11 33
12#include <cstddef> 34#include <cstddef>
13#include <cmath> 35#include <cmath>
14#include <new> 36#include <new>
15#include <vector> 37#include <vector>
17#include <glib.h> 39#include <glib.h>
18 40
19#include <shstr.h> 41#include <shstr.h>
20#include <traits.h> 42#include <traits.h>
21 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define auto(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
24 59
60// could use the sizeof (arr) /( sizeof (arr [0]) here, but C++ is
61// much more obfuscated... :)
62
63template<typename T, int N>
64inline int array_length (const T (&arr)[N])
65{
66 return N;
67}
68
25// very ugly macro that basicaly declares and initialises a variable 69// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 70// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 71// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 72// (note: works great for pointers)
29// most ugly macro I ever wrote 73// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 74#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 75
32// in range including end 76// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 77#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 78 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 79
36// in range excluding end 80// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 81#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 82 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 83
84void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 85void fork_abort (const char *msg);
41 86
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 87// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 88// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 89template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 90template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 91template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 92
93template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
94template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
95template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
96
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 97template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
98
99template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
100template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
101
102// sign returns -1 or +1
103template<typename T>
104static inline T sign (T v) { return v < 0 ? -1 : +1; }
105// relies on 2c representation
106template<>
107inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
108
109// sign0 returns -1, 0 or +1
110template<typename T>
111static inline T sign0 (T v) { return v ? sign (v) : 0; }
112
113template<typename T, typename U>
114static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
115
116// div* only work correctly for div > 0
117// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
118template<typename T> static inline T div (T val, T div)
119{
120 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
121}
122// div, round-up
123template<typename T> static inline T div_ru (T val, T div)
124{
125 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126}
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div)
129{
130 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131}
132
133// lerp* only work correctly for min_in < max_in
134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
135template<typename T>
136static inline T
137lerp (T val, T min_in, T max_in, T min_out, T max_out)
138{
139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140}
141
142// lerp, round-down
143template<typename T>
144static inline T
145lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-up
151template<typename T>
152static inline T
153lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156}
49 157
50// lots of stuff taken from FXT 158// lots of stuff taken from FXT
51 159
52/* Rotate right. This is used in various places for checksumming */ 160/* Rotate right. This is used in various places for checksumming */
53//TODO: that sucks, use a better checksum algo 161//TODO: that sucks, use a better checksum algo
90 int32_t d = b - a; 198 int32_t d = b - a;
91 d &= d >> 31; 199 d &= d >> 31;
92 return b - d; 200 return b - d;
93} 201}
94 202
95// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
96// on modern cpus 204// on modern cpus
97inline int 205inline int
98isqrt (int n) 206isqrt (int n)
99{ 207{
100 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
101} 223}
102 224
103// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
104#if 0 226#if 0
105// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
130absdir (int d) 252absdir (int d)
131{ 253{
132 return ((d - 1) & 7) + 1; 254 return ((d - 1) & 7) + 1;
133} 255}
134 256
257// avoid ctz name because netbsd or freebsd spams it's namespace with it
258#if GCC_VERSION(3,4)
259static inline int least_significant_bit (uint32_t x)
260{
261 return __builtin_ctz (x);
262}
263#else
264int least_significant_bit (uint32_t x);
265#endif
266
267#define for_all_bits_sparse_32(mask, idxvar) \
268 for (uint32_t idxvar, mask_ = mask; \
269 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
270
271extern ssize_t slice_alloc; // statistics
272
273void *salloc_ (int n) throw (std::bad_alloc);
274void *salloc_ (int n, void *src) throw (std::bad_alloc);
275
276// strictly the same as g_slice_alloc, but never returns 0
277template<typename T>
278inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
279
280// also copies src into the new area, like "memdup"
281// if src is 0, clears the memory
282template<typename T>
283inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
284
285// clears the memory
286template<typename T>
287inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
288
289// for symmetry
290template<typename T>
291inline void sfree (T *ptr, int n = 1) throw ()
292{
293 if (expect_true (ptr))
294 {
295 slice_alloc -= n * sizeof (T);
296 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
297 g_slice_free1 (n * sizeof (T), (void *)ptr);
298 assert (slice_alloc >= 0);//D
299 }
300}
301
302// nulls the pointer
303template<typename T>
304inline void sfree0 (T *&ptr, int n = 1) throw ()
305{
306 sfree<T> (ptr, n);
307 ptr = 0;
308}
309
135// makes dynamically allocated objects zero-initialised 310// makes dynamically allocated objects zero-initialised
136struct zero_initialised 311struct zero_initialised
137{ 312{
138 void *operator new (size_t s, void *p) 313 void *operator new (size_t s, void *p)
139 { 314 {
141 return p; 316 return p;
142 } 317 }
143 318
144 void *operator new (size_t s) 319 void *operator new (size_t s)
145 { 320 {
146 return g_slice_alloc0 (s); 321 return salloc0<char> (s);
147 } 322 }
148 323
149 void *operator new[] (size_t s) 324 void *operator new[] (size_t s)
150 { 325 {
151 return g_slice_alloc0 (s); 326 return salloc0<char> (s);
152 } 327 }
153 328
154 void operator delete (void *p, size_t s) 329 void operator delete (void *p, size_t s)
155 { 330 {
156 g_slice_free1 (s, p); 331 sfree ((char *)p, s);
157 } 332 }
158 333
159 void operator delete[] (void *p, size_t s) 334 void operator delete[] (void *p, size_t s)
160 { 335 {
161 g_slice_free1 (s, p); 336 sfree ((char *)p, s);
162 } 337 }
163}; 338};
164 339
165void *salloc_ (int n) throw (std::bad_alloc); 340// makes dynamically allocated objects zero-initialised
166void *salloc_ (int n, void *src) throw (std::bad_alloc); 341struct slice_allocated
167
168// strictly the same as g_slice_alloc, but never returns 0
169template<typename T>
170inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
171
172// also copies src into the new area, like "memdup"
173// if src is 0, clears the memory
174template<typename T>
175inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
176
177// clears the memory
178template<typename T>
179inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
180
181// for symmetry
182template<typename T>
183inline void sfree (T *ptr, int n = 1) throw ()
184{ 342{
185#ifdef PREFER_MALLOC 343 void *operator new (size_t s, void *p)
186 free (ptr); 344 {
187#else 345 return p;
188 g_slice_free1 (n * sizeof (T), (void *)ptr); 346 }
189#endif 347
190} 348 void *operator new (size_t s)
349 {
350 return salloc<char> (s);
351 }
352
353 void *operator new[] (size_t s)
354 {
355 return salloc<char> (s);
356 }
357
358 void operator delete (void *p, size_t s)
359 {
360 sfree ((char *)p, s);
361 }
362
363 void operator delete[] (void *p, size_t s)
364 {
365 sfree ((char *)p, s);
366 }
367};
191 368
192// a STL-compatible allocator that uses g_slice 369// a STL-compatible allocator that uses g_slice
193// boy, this is verbose 370// boy, this is verbose
194template<typename Tp> 371template<typename Tp>
195struct slice_allocator 372struct slice_allocator
207 { 384 {
208 typedef slice_allocator<U> other; 385 typedef slice_allocator<U> other;
209 }; 386 };
210 387
211 slice_allocator () throw () { } 388 slice_allocator () throw () { }
212 slice_allocator (const slice_allocator &o) throw () { } 389 slice_allocator (const slice_allocator &) throw () { }
213 template<typename Tp2> 390 template<typename Tp2>
214 slice_allocator (const slice_allocator<Tp2> &) throw () { } 391 slice_allocator (const slice_allocator<Tp2> &) throw () { }
215 392
216 ~slice_allocator () { } 393 ~slice_allocator () { }
217 394
226 void deallocate (pointer p, size_type n) 403 void deallocate (pointer p, size_type n)
227 { 404 {
228 sfree<Tp> (p, n); 405 sfree<Tp> (p, n);
229 } 406 }
230 407
231 size_type max_size ()const throw () 408 size_type max_size () const throw ()
232 { 409 {
233 return size_t (-1) / sizeof (Tp); 410 return size_t (-1) / sizeof (Tp);
234 } 411 }
235 412
236 void construct (pointer p, const Tp &val) 413 void construct (pointer p, const Tp &val)
247// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 424// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
248// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 425// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
249// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 426// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
250struct tausworthe_random_generator 427struct tausworthe_random_generator
251{ 428{
252 // generator
253 uint32_t state [4]; 429 uint32_t state [4];
254 430
255 void operator =(const tausworthe_random_generator &src) 431 void operator =(const tausworthe_random_generator &src)
256 { 432 {
257 state [0] = src.state [0]; 433 state [0] = src.state [0];
260 state [3] = src.state [3]; 436 state [3] = src.state [3];
261 } 437 }
262 438
263 void seed (uint32_t seed); 439 void seed (uint32_t seed);
264 uint32_t next (); 440 uint32_t next ();
441};
265 442
266 // uniform distribution 443// Xorshift RNGs, George Marsaglia
444// http://www.jstatsoft.org/v08/i14/paper
445// this one is about 40% faster than the tausworthe one above (i.e. not much),
446// despite the inlining, and has the issue of only creating 2**32-1 numbers.
447// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
448struct xorshift_random_generator
449{
450 uint32_t x, y;
451
452 void operator =(const xorshift_random_generator &src)
453 {
454 x = src.x;
455 y = src.y;
456 }
457
458 void seed (uint32_t seed)
459 {
460 x = seed;
461 y = seed * 69069U;
462 }
463
464 uint32_t next ()
465 {
466 uint32_t t = x ^ (x << 10);
467 x = y;
468 y = y ^ (y >> 13) ^ t ^ (t >> 10);
469 return y;
470 }
471};
472
473template<class generator>
474struct random_number_generator : generator
475{
476 // uniform distribution, 0 .. max (0, num - 1)
267 uint32_t operator ()(uint32_t r_max) 477 uint32_t operator ()(uint32_t num)
268 { 478 {
269 return is_constant (r_max) 479 return !is_constant (num) ? get_range (num) // non-constant
270 ? (next () * (uint64_t)r_max) >> 32U 480 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
271 : get_range (r_max); 481 : this->next () & (num - 1); // constant, power-of-two
272 } 482 }
273 483
274 // return a number within (min .. max) 484 // return a number within the closed interval [min .. max]
275 int operator () (int r_min, int r_max) 485 int operator () (int r_min, int r_max)
276 { 486 {
277 return is_constant (r_min) && is_constant (r_max) 487 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
278 ? r_min + operator ()(max (r_max - r_min + 1, 1)) 488 ? r_min + operator ()(r_max - r_min + 1)
279 : get_range (r_min, r_max); 489 : get_range (r_min, r_max);
280 } 490 }
281 491
492 // return a number within the closed interval [0..1]
282 double operator ()() 493 double operator ()()
283 { 494 {
284 return this->next () / (double)0xFFFFFFFFU; 495 return this->next () / (double)0xFFFFFFFFU;
285 } 496 }
286 497
287protected: 498protected:
288 uint32_t get_range (uint32_t r_max); 499 uint32_t get_range (uint32_t r_max);
289 int get_range (int r_min, int r_max); 500 int get_range (int r_min, int r_max);
290}; 501};
291 502
292typedef tausworthe_random_generator rand_gen; 503typedef random_number_generator<tausworthe_random_generator> rand_gen;
293 504
294extern rand_gen rndm; 505extern rand_gen rndm, rmg_rndm;
506
507INTERFACE_CLASS (attachable)
508struct refcnt_base
509{
510 typedef int refcnt_t;
511 mutable refcnt_t ACC (RW, refcnt);
512
513 MTH void refcnt_inc () const { ++refcnt; }
514 MTH void refcnt_dec () const { --refcnt; }
515
516 refcnt_base () : refcnt (0) { }
517};
518
519// to avoid branches with more advanced compilers
520extern refcnt_base::refcnt_t refcnt_dummy;
295 521
296template<class T> 522template<class T>
297struct refptr 523struct refptr
298{ 524{
525 // p if not null
526 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
527
528 void refcnt_dec ()
529 {
530 if (!is_constant (p))
531 --*refcnt_ref ();
532 else if (p)
533 --p->refcnt;
534 }
535
536 void refcnt_inc ()
537 {
538 if (!is_constant (p))
539 ++*refcnt_ref ();
540 else if (p)
541 ++p->refcnt;
542 }
543
299 T *p; 544 T *p;
300 545
301 refptr () : p(0) { } 546 refptr () : p(0) { }
302 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 547 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
303 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 548 refptr (T *p) : p(p) { refcnt_inc (); }
304 ~refptr () { if (p) p->refcnt_dec (); } 549 ~refptr () { refcnt_dec (); }
305 550
306 const refptr<T> &operator =(T *o) 551 const refptr<T> &operator =(T *o)
307 { 552 {
553 // if decrementing ever destroys we need to reverse the order here
308 if (p) p->refcnt_dec (); 554 refcnt_dec ();
309 p = o; 555 p = o;
310 if (p) p->refcnt_inc (); 556 refcnt_inc ();
311
312 return *this; 557 return *this;
313 } 558 }
314 559
315 const refptr<T> &operator =(const refptr<T> o) 560 const refptr<T> &operator =(const refptr<T> &o)
316 { 561 {
317 *this = o.p; 562 *this = o.p;
318 return *this; 563 return *this;
319 } 564 }
320 565
321 T &operator * () const { return *p; } 566 T &operator * () const { return *p; }
322 T *operator ->() const { return p; } 567 T *operator ->() const { return p; }
323 568
324 operator T *() const { return p; } 569 operator T *() const { return p; }
325}; 570};
326 571
327typedef refptr<maptile> maptile_ptr; 572typedef refptr<maptile> maptile_ptr;
328typedef refptr<object> object_ptr; 573typedef refptr<object> object_ptr;
329typedef refptr<archetype> arch_ptr; 574typedef refptr<archetype> arch_ptr;
330typedef refptr<client> client_ptr; 575typedef refptr<client> client_ptr;
331typedef refptr<player> player_ptr; 576typedef refptr<player> player_ptr;
577typedef refptr<region> region_ptr;
578
579#define STRHSH_NULL 2166136261
580
581static inline uint32_t
582strhsh (const char *s)
583{
584 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
585 // it is about twice as fast as the one-at-a-time one,
586 // with good distribution.
587 // FNV-1a is faster on many cpus because the multiplication
588 // runs concurrently with the looping logic.
589 uint32_t hash = STRHSH_NULL;
590
591 while (*s)
592 hash = (hash ^ *s++) * 16777619U;
593
594 return hash;
595}
596
597static inline uint32_t
598memhsh (const char *s, size_t len)
599{
600 uint32_t hash = STRHSH_NULL;
601
602 while (len--)
603 hash = (hash ^ *s++) * 16777619U;
604
605 return hash;
606}
332 607
333struct str_hash 608struct str_hash
334{ 609{
335 std::size_t operator ()(const char *s) const 610 std::size_t operator ()(const char *s) const
336 { 611 {
337 unsigned long hash = 0;
338
339 /* use the one-at-a-time hash function, which supposedly is
340 * better than the djb2-like one used by perl5.005, but
341 * certainly is better then the bug used here before.
342 * see http://burtleburtle.net/bob/hash/doobs.html
343 */
344 while (*s)
345 {
346 hash += *s++;
347 hash += hash << 10;
348 hash ^= hash >> 6;
349 }
350
351 hash += hash << 3;
352 hash ^= hash >> 11;
353 hash += hash << 15;
354
355 return hash; 612 return strhsh (s);
613 }
614
615 std::size_t operator ()(const shstr &s) const
616 {
617 return strhsh (s);
356 } 618 }
357}; 619};
358 620
359struct str_equal 621struct str_equal
360{ 622{
362 { 624 {
363 return !strcmp (a, b); 625 return !strcmp (a, b);
364 } 626 }
365}; 627};
366 628
629// Mostly the same as std::vector, but insert/erase can reorder
630// the elements, making append(=insert)/remove O(1) instead of O(n).
631//
632// NOTE: only some forms of erase are available
367template<class T> 633template<class T>
368struct unordered_vector : std::vector<T, slice_allocator<T> > 634struct unordered_vector : std::vector<T, slice_allocator<T> >
369{ 635{
370 typedef typename unordered_vector::iterator iterator; 636 typedef typename unordered_vector::iterator iterator;
371 637
381 { 647 {
382 erase ((unsigned int )(i - this->begin ())); 648 erase ((unsigned int )(i - this->begin ()));
383 } 649 }
384}; 650};
385 651
386template<class T, int T::* index> 652// This container blends advantages of linked lists
653// (efficiency) with vectors (random access) by
654// by using an unordered vector and storing the vector
655// index inside the object.
656//
657// + memory-efficient on most 64 bit archs
658// + O(1) insert/remove
659// + free unique (but varying) id for inserted objects
660// + cache-friendly iteration
661// - only works for pointers to structs
662//
663// NOTE: only some forms of erase/insert are available
664typedef int object_vector_index;
665
666template<class T, object_vector_index T::*indexmember>
387struct object_vector : std::vector<T *, slice_allocator<T *> > 667struct object_vector : std::vector<T *, slice_allocator<T *> >
388{ 668{
669 typedef typename object_vector::iterator iterator;
670
671 bool contains (const T *obj) const
672 {
673 return obj->*indexmember;
674 }
675
676 iterator find (const T *obj)
677 {
678 return obj->*indexmember
679 ? this->begin () + obj->*indexmember - 1
680 : this->end ();
681 }
682
683 void push_back (T *obj)
684 {
685 std::vector<T *, slice_allocator<T *> >::push_back (obj);
686 obj->*indexmember = this->size ();
687 }
688
389 void insert (T *obj) 689 void insert (T *obj)
390 { 690 {
391 assert (!(obj->*index));
392 push_back (obj); 691 push_back (obj);
393 obj->*index = this->size ();
394 } 692 }
395 693
396 void insert (T &obj) 694 void insert (T &obj)
397 { 695 {
398 insert (&obj); 696 insert (&obj);
399 } 697 }
400 698
401 void erase (T *obj) 699 void erase (T *obj)
402 { 700 {
403 assert (obj->*index);
404 unsigned int pos = obj->*index; 701 unsigned int pos = obj->*indexmember;
405 obj->*index = 0; 702 obj->*indexmember = 0;
406 703
407 if (pos < this->size ()) 704 if (pos < this->size ())
408 { 705 {
409 (*this)[pos - 1] = (*this)[this->size () - 1]; 706 (*this)[pos - 1] = (*this)[this->size () - 1];
410 (*this)[pos - 1]->*index = pos; 707 (*this)[pos - 1]->*indexmember = pos;
411 } 708 }
412 709
413 this->pop_back (); 710 this->pop_back ();
414 } 711 }
415 712
416 void erase (T &obj) 713 void erase (T &obj)
417 { 714 {
418 errase (&obj); 715 erase (&obj);
419 } 716 }
420}; 717};
421 718
422// basically does what strncpy should do, but appends "..." to strings exceeding length 719// basically does what strncpy should do, but appends "..." to strings exceeding length
720// returns the number of bytes actually used (including \0)
423void assign (char *dst, const char *src, int maxlen); 721int assign (char *dst, const char *src, int maxsize);
424 722
425// type-safe version of assign 723// type-safe version of assign
426template<int N> 724template<int N>
427inline void assign (char (&dst)[N], const char *src) 725inline int assign (char (&dst)[N], const char *src)
428{ 726{
429 assign ((char *)&dst, src, N); 727 return assign ((char *)&dst, src, N);
430} 728}
431 729
432typedef double tstamp; 730typedef double tstamp;
433 731
434// return current time as timestampe 732// return current time as timestamp
435tstamp now (); 733tstamp now ();
436 734
437int similar_direction (int a, int b); 735int similar_direction (int a, int b);
438 736
737// like v?sprintf, but returns a "static" buffer
738char *vformat (const char *format, va_list ap);
739char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
740
741// safety-check player input which will become object->msg
742bool msg_is_safe (const char *msg);
743
744/////////////////////////////////////////////////////////////////////////////
745// threads, very very thin wrappers around pthreads
746
747struct thread
748{
749 pthread_t id;
750
751 void start (void *(*start_routine)(void *), void *arg = 0);
752
753 void cancel ()
754 {
755 pthread_cancel (id);
756 }
757
758 void *join ()
759 {
760 void *ret;
761
762 if (pthread_join (id, &ret))
763 cleanup ("pthread_join failed", 1);
764
765 return ret;
766 }
767};
768
769// note that mutexes are not classes
770typedef pthread_mutex_t smutex;
771
772#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
773 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
774#else
775 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
439#endif 776#endif
440 777
778#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
779#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
780#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
781
782typedef pthread_cond_t scond;
783
784#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
785#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
786#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
787#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
788
789#endif
790

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines