ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.66 by root, Wed Apr 2 11:13:55 2008 UTC vs.
Revision 1.120 by root, Mon Oct 29 23:55:54 2012 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Deliantra is free software: you can redistribute it and/or modify 6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * it under the terms of the GNU General Public License as published by 7 * the terms of the Affero GNU General Public License as published by the
8 * the Free Software Foundation, either version 3 of the License, or 8 * Free Software Foundation, either version 3 of the License, or (at your
9 * (at your option) any later version. 9 * option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the Affero GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
18 * 19 *
19 * The authors can be reached via e-mail to <support@deliantra.net> 20 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 21 */
21 22
22#ifndef UTIL_H__ 23#ifndef UTIL_H__
23#define UTIL_H__ 24#define UTIL_H__
24 25
25#define DEBUG_SALLOC 0 26#include <compiler.h>
26#define PREFER_MALLOC 0
27 27
28#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30# define expect(expr,value) __builtin_expect ((expr),(value)) 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32#else
33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
36#endif
37
38#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
39# define decltype(x) typeof(x)
40#endif
41
42// put into ifs if you are very sure that the expression
43// is mostly true or mosty false. note that these return
44// booleans, not the expression.
45#define expect_false(expr) expect ((expr) != 0, 0)
46#define expect_true(expr) expect ((expr) != 0, 1)
47 31
48#include <pthread.h> 32#include <pthread.h>
49 33
50#include <cstddef> 34#include <cstddef>
51#include <cmath> 35#include <cmath>
62# define g_slice_alloc(s) debug_slice_alloc(s) 46# define g_slice_alloc(s) debug_slice_alloc(s)
63# define g_slice_free1(s,p) debug_slice_free1(s,p) 47# define g_slice_free1(s,p) debug_slice_free1(s,p)
64void *g_slice_alloc (unsigned long size); 48void *g_slice_alloc (unsigned long size);
65void *g_slice_alloc0 (unsigned long size); 49void *g_slice_alloc0 (unsigned long size);
66void g_slice_free1 (unsigned long size, void *ptr); 50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
67#endif 55#endif
68 56
69// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
70#define auto(var,expr) decltype(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
71 59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
72// very ugly macro that basicaly declares and initialises a variable 71// very ugly macro that basically declares and initialises a variable
73// that is in scope for the next statement only 72// that is in scope for the next statement only
74// works only for stuff that can be assigned 0 and converts to false 73// works only for stuff that can be assigned 0 and converts to false
75// (note: works great for pointers) 74// (note: works great for pointers)
76// most ugly macro I ever wrote 75// most ugly macro I ever wrote
77#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
87void cleanup (const char *cause, bool make_core = false); 86void cleanup (const char *cause, bool make_core = false);
88void fork_abort (const char *msg); 87void fork_abort (const char *msg);
89 88
90// rationale for using (U) not (T) is to reduce signed/unsigned issues, 89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
91// as a is often a constant while b is the variable. it is still a bug, though. 90// as a is often a constant while b is the variable. it is still a bug, though.
92template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 91template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
93template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 92template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
94template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
95 98
96template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
97 100
98template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); } 101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
99template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); } 102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
100 103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119//clashes with C++0x
120template<typename T, typename U>
121static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129
130template<> inline float div (float val, float div) { return val / div; }
131template<> inline double div (double val, double div) { return val / div; }
132
133// div, round-up
134template<typename T> static inline T div_ru (T val, T div)
135{
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137}
138// div, round-down
139template<typename T> static inline T div_rd (T val, T div)
140{
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142}
143
144// lerp* only work correctly for min_in < max_in
145// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
101template<typename T> 146template<typename T>
102static inline T 147static inline T
103lerp (T val, T min_in, T max_in, T min_out, T max_out) 148lerp (T val, T min_in, T max_in, T min_out, T max_out)
104{ 149{
105 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151}
152
153// lerp, round-down
154template<typename T>
155static inline T
156lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157{
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159}
160
161// lerp, round-up
162template<typename T>
163static inline T
164lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165{
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
106} 167}
107 168
108// lots of stuff taken from FXT 169// lots of stuff taken from FXT
109 170
110/* Rotate right. This is used in various places for checksumming */ 171/* Rotate right. This is used in various places for checksumming */
148 int32_t d = b - a; 209 int32_t d = b - a;
149 d &= d >> 31; 210 d &= d >> 31;
150 return b - d; 211 return b - d;
151} 212}
152 213
153// this is much faster than crossfires original algorithm 214// this is much faster than crossfire's original algorithm
154// on modern cpus 215// on modern cpus
155inline int 216inline int
156isqrt (int n) 217isqrt (int n)
157{ 218{
158 return (int)sqrtf ((float)n); 219 return (int)sqrtf ((float)n);
220}
221
222// this is kind of like the ^^ operator, if it would exist, without sequence point.
223// more handy than it looks like, due to the implicit !! done on its arguments
224inline bool
225logical_xor (bool a, bool b)
226{
227 return a != b;
228}
229
230inline bool
231logical_implies (bool a, bool b)
232{
233 return a <= b;
159} 234}
160 235
161// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 236// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
162#if 0 237#if 0
163// and has a max. error of 6 in the range -100..+100. 238// and has a max. error of 6 in the range -100..+100.
177#else 252#else
178 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 253 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
179#endif 254#endif
180} 255}
181 256
257// can be substantially faster than floor, if your value range allows for it
258template<typename T>
259inline T
260fastfloor (T x)
261{
262 return std::floor (x);
263}
264
265inline float
266fastfloor (float x)
267{
268 return sint32(x) - (x < 0);
269}
270
271inline double
272fastfloor (double x)
273{
274 return sint64(x) - (x < 0);
275}
276
182/* 277/*
183 * absdir(int): Returns a number between 1 and 8, which represent 278 * absdir(int): Returns a number between 1 and 8, which represent
184 * the "absolute" direction of a number (it actually takes care of 279 * the "absolute" direction of a number (it actually takes care of
185 * "overflow" in previous calculations of a direction). 280 * "overflow" in previous calculations of a direction).
186 */ 281 */
188absdir (int d) 283absdir (int d)
189{ 284{
190 return ((d - 1) & 7) + 1; 285 return ((d - 1) & 7) + 1;
191} 286}
192 287
288// avoid ctz name because netbsd or freebsd spams it's namespace with it
289#if GCC_VERSION(3,4)
290static inline int least_significant_bit (uint32_t x)
291{
292 return __builtin_ctz (x);
293}
294#else
295int least_significant_bit (uint32_t x);
296#endif
297
298#define for_all_bits_sparse_32(mask, idxvar) \
299 for (uint32_t idxvar, mask_ = mask; \
300 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
301
193extern size_t slice_alloc; // statistics 302extern ssize_t slice_alloc; // statistics
303
304void *salloc_ (int n) throw (std::bad_alloc);
305void *salloc_ (int n, void *src) throw (std::bad_alloc);
306
307// strictly the same as g_slice_alloc, but never returns 0
308template<typename T>
309inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
310
311// also copies src into the new area, like "memdup"
312// if src is 0, clears the memory
313template<typename T>
314inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
315
316// clears the memory
317template<typename T>
318inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
319
320// for symmetry
321template<typename T>
322inline void sfree (T *ptr, int n = 1) throw ()
323{
324 if (expect_true (ptr))
325 {
326 slice_alloc -= n * sizeof (T);
327 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
328 g_slice_free1 (n * sizeof (T), (void *)ptr);
329 }
330}
331
332// nulls the pointer
333template<typename T>
334inline void sfree0 (T *&ptr, int n = 1) throw ()
335{
336 sfree<T> (ptr, n);
337 ptr = 0;
338}
194 339
195// makes dynamically allocated objects zero-initialised 340// makes dynamically allocated objects zero-initialised
196struct zero_initialised 341struct zero_initialised
197{ 342{
198 void *operator new (size_t s, void *p) 343 void *operator new (size_t s, void *p)
201 return p; 346 return p;
202 } 347 }
203 348
204 void *operator new (size_t s) 349 void *operator new (size_t s)
205 { 350 {
206 slice_alloc += s;
207 return g_slice_alloc0 (s); 351 return salloc0<char> (s);
208 } 352 }
209 353
210 void *operator new[] (size_t s) 354 void *operator new[] (size_t s)
211 { 355 {
212 slice_alloc += s;
213 return g_slice_alloc0 (s); 356 return salloc0<char> (s);
214 } 357 }
215 358
216 void operator delete (void *p, size_t s) 359 void operator delete (void *p, size_t s)
217 { 360 {
218 slice_alloc -= s; 361 sfree ((char *)p, s);
219 g_slice_free1 (s, p);
220 } 362 }
221 363
222 void operator delete[] (void *p, size_t s) 364 void operator delete[] (void *p, size_t s)
223 { 365 {
224 slice_alloc -= s; 366 sfree ((char *)p, s);
225 g_slice_free1 (s, p);
226 } 367 }
227}; 368};
228 369
229void *salloc_ (int n) throw (std::bad_alloc); 370// makes dynamically allocated objects zero-initialised
230void *salloc_ (int n, void *src) throw (std::bad_alloc); 371struct slice_allocated
231
232// strictly the same as g_slice_alloc, but never returns 0
233template<typename T>
234inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
235
236// also copies src into the new area, like "memdup"
237// if src is 0, clears the memory
238template<typename T>
239inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
240
241// clears the memory
242template<typename T>
243inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
244
245// for symmetry
246template<typename T>
247inline void sfree (T *ptr, int n = 1) throw ()
248{ 372{
249#if PREFER_MALLOC 373 void *operator new (size_t s, void *p)
250 free (ptr); 374 {
251#else 375 return p;
252 slice_alloc -= n * sizeof (T); 376 }
253 g_slice_free1 (n * sizeof (T), (void *)ptr); 377
254#endif 378 void *operator new (size_t s)
255} 379 {
380 return salloc<char> (s);
381 }
382
383 void *operator new[] (size_t s)
384 {
385 return salloc<char> (s);
386 }
387
388 void operator delete (void *p, size_t s)
389 {
390 sfree ((char *)p, s);
391 }
392
393 void operator delete[] (void *p, size_t s)
394 {
395 sfree ((char *)p, s);
396 }
397};
256 398
257// a STL-compatible allocator that uses g_slice 399// a STL-compatible allocator that uses g_slice
258// boy, this is verbose 400// boy, this is verbose
259template<typename Tp> 401template<typename Tp>
260struct slice_allocator 402struct slice_allocator
307 { 449 {
308 p->~Tp (); 450 p->~Tp ();
309 } 451 }
310}; 452};
311 453
312// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 454// basically a memory area, but refcounted
313// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 455struct refcnt_buf
314// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
315struct tausworthe_random_generator
316{ 456{
317 // generator 457 char *data;
318 uint32_t state [4];
319 458
320 void operator =(const tausworthe_random_generator &src) 459 refcnt_buf (size_t size = 0);
321 { 460 refcnt_buf (void *data, size_t size);
322 state [0] = src.state [0];
323 state [1] = src.state [1];
324 state [2] = src.state [2];
325 state [3] = src.state [3];
326 }
327 461
328 void seed (uint32_t seed); 462 refcnt_buf (const refcnt_buf &src)
329 uint32_t next ();
330
331 // uniform distribution
332 uint32_t operator ()(uint32_t num)
333 { 463 {
334 return is_constant (num) 464 data = src.data;
335 ? (next () * (uint64_t)num) >> 32U 465 ++_refcnt ();
336 : get_range (num);
337 } 466 }
338 467
339 // return a number within (min .. max) 468 ~refcnt_buf ();
340 int operator () (int r_min, int r_max)
341 {
342 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
343 ? r_min + operator ()(r_max - r_min + 1)
344 : get_range (r_min, r_max);
345 }
346 469
347 double operator ()() 470 refcnt_buf &operator =(const refcnt_buf &src);
471
472 operator char *()
348 { 473 {
349 return this->next () / (double)0xFFFFFFFFU; 474 return data;
475 }
476
477 size_t size () const
478 {
479 return _size ();
350 } 480 }
351 481
352protected: 482protected:
353 uint32_t get_range (uint32_t r_max); 483 enum {
354 int get_range (int r_min, int r_max); 484 overhead = sizeof (unsigned int) * 2
355}; 485 };
356 486
357typedef tausworthe_random_generator rand_gen; 487 unsigned int &_size () const
488 {
489 return ((unsigned int *)data)[-2];
490 }
358 491
359extern rand_gen rndm; 492 unsigned int &_refcnt () const
493 {
494 return ((unsigned int *)data)[-1];
495 }
496
497 void _alloc (unsigned int size)
498 {
499 data = ((char *)salloc<char> (size + overhead)) + overhead;
500 _size () = size;
501 _refcnt () = 1;
502 }
503
504 void dec ()
505 {
506 if (!--_refcnt ())
507 sfree<char> (data - overhead, size () + overhead);
508 }
509};
360 510
361INTERFACE_CLASS (attachable) 511INTERFACE_CLASS (attachable)
362struct refcnt_base 512struct refcnt_base
363{ 513{
364 typedef int refcnt_t; 514 typedef int refcnt_t;
426typedef refptr<maptile> maptile_ptr; 576typedef refptr<maptile> maptile_ptr;
427typedef refptr<object> object_ptr; 577typedef refptr<object> object_ptr;
428typedef refptr<archetype> arch_ptr; 578typedef refptr<archetype> arch_ptr;
429typedef refptr<client> client_ptr; 579typedef refptr<client> client_ptr;
430typedef refptr<player> player_ptr; 580typedef refptr<player> player_ptr;
581typedef refptr<region> region_ptr;
582
583#define STRHSH_NULL 2166136261
584
585static inline uint32_t
586strhsh (const char *s)
587{
588 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
589 // it is about twice as fast as the one-at-a-time one,
590 // with good distribution.
591 // FNV-1a is faster on many cpus because the multiplication
592 // runs concurrently with the looping logic.
593 // we modify the hash a bit to improve its distribution
594 uint32_t hash = STRHSH_NULL;
595
596 while (*s)
597 hash = (hash ^ *s++) * 16777619U;
598
599 return hash ^ (hash >> 16);
600}
601
602static inline uint32_t
603memhsh (const char *s, size_t len)
604{
605 uint32_t hash = STRHSH_NULL;
606
607 while (len--)
608 hash = (hash ^ *s++) * 16777619U;
609
610 return hash;
611}
431 612
432struct str_hash 613struct str_hash
433{ 614{
434 std::size_t operator ()(const char *s) const 615 std::size_t operator ()(const char *s) const
435 { 616 {
436 unsigned long hash = 0;
437
438 /* use the one-at-a-time hash function, which supposedly is
439 * better than the djb2-like one used by perl5.005, but
440 * certainly is better then the bug used here before.
441 * see http://burtleburtle.net/bob/hash/doobs.html
442 */
443 while (*s)
444 {
445 hash += *s++;
446 hash += hash << 10;
447 hash ^= hash >> 6;
448 }
449
450 hash += hash << 3;
451 hash ^= hash >> 11;
452 hash += hash << 15;
453
454 return hash; 617 return strhsh (s);
618 }
619
620 std::size_t operator ()(const shstr &s) const
621 {
622 return strhsh (s);
455 } 623 }
456}; 624};
457 625
458struct str_equal 626struct str_equal
459{ 627{
486 } 654 }
487}; 655};
488 656
489// This container blends advantages of linked lists 657// This container blends advantages of linked lists
490// (efficiency) with vectors (random access) by 658// (efficiency) with vectors (random access) by
491// by using an unordered vector and storing the vector 659// using an unordered vector and storing the vector
492// index inside the object. 660// index inside the object.
493// 661//
494// + memory-efficient on most 64 bit archs 662// + memory-efficient on most 64 bit archs
495// + O(1) insert/remove 663// + O(1) insert/remove
496// + free unique (but varying) id for inserted objects 664// + free unique (but varying) id for inserted objects
533 insert (&obj); 701 insert (&obj);
534 } 702 }
535 703
536 void erase (T *obj) 704 void erase (T *obj)
537 { 705 {
538 unsigned int pos = obj->*indexmember; 706 object_vector_index pos = obj->*indexmember;
539 obj->*indexmember = 0; 707 obj->*indexmember = 0;
540 708
541 if (pos < this->size ()) 709 if (pos < this->size ())
542 { 710 {
543 (*this)[pos - 1] = (*this)[this->size () - 1]; 711 (*this)[pos - 1] = (*this)[this->size () - 1];
551 { 719 {
552 erase (&obj); 720 erase (&obj);
553 } 721 }
554}; 722};
555 723
724/////////////////////////////////////////////////////////////////////////////
725
726// something like a vector or stack, but without
727// out of bounds checking
728template<typename T>
729struct fixed_stack
730{
731 T *data;
732 int size;
733 int max;
734
735 fixed_stack ()
736 : size (0), data (0)
737 {
738 }
739
740 fixed_stack (int max)
741 : size (0), max (max)
742 {
743 data = salloc<T> (max);
744 }
745
746 void reset (int new_max)
747 {
748 sfree (data, max);
749 size = 0;
750 max = new_max;
751 data = salloc<T> (max);
752 }
753
754 void free ()
755 {
756 sfree (data, max);
757 data = 0;
758 }
759
760 ~fixed_stack ()
761 {
762 sfree (data, max);
763 }
764
765 T &operator[](int idx)
766 {
767 return data [idx];
768 }
769
770 void push (T v)
771 {
772 data [size++] = v;
773 }
774
775 T &pop ()
776 {
777 return data [--size];
778 }
779
780 T remove (int idx)
781 {
782 T v = data [idx];
783
784 data [idx] = data [--size];
785
786 return v;
787 }
788};
789
790/////////////////////////////////////////////////////////////////////////////
791
556// basically does what strncpy should do, but appends "..." to strings exceeding length 792// basically does what strncpy should do, but appends "..." to strings exceeding length
793// returns the number of bytes actually used (including \0)
557void assign (char *dst, const char *src, int maxlen); 794int assign (char *dst, const char *src, int maxsize);
558 795
559// type-safe version of assign 796// type-safe version of assign
560template<int N> 797template<int N>
561inline void assign (char (&dst)[N], const char *src) 798inline int assign (char (&dst)[N], const char *src)
562{ 799{
563 assign ((char *)&dst, src, N); 800 return assign ((char *)&dst, src, N);
564} 801}
565 802
566typedef double tstamp; 803typedef double tstamp;
567 804
568// return current time as timestamp 805// return current time as timestamp
569tstamp now (); 806tstamp now ();
570 807
571int similar_direction (int a, int b); 808int similar_direction (int a, int b);
572 809
573// like sprintf, but returns a "static" buffer 810// like v?sprintf, but returns a "static" buffer
574const char *format (const char *format, ...); 811char *vformat (const char *format, va_list ap);
812char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
813
814// safety-check player input which will become object->msg
815bool msg_is_safe (const char *msg);
575 816
576///////////////////////////////////////////////////////////////////////////// 817/////////////////////////////////////////////////////////////////////////////
577// threads, very very thin wrappers around pthreads 818// threads, very very thin wrappers around pthreads
578 819
579struct thread 820struct thread
606#else 847#else
607 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER 848 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
608#endif 849#endif
609 850
610#define SMUTEX(name) smutex name = SMUTEX_INITIALISER 851#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
611#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name)) 852#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
612#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name)) 853#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
613 854
855typedef pthread_cond_t scond;
856
857#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
858#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
859#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
860#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
861
614#endif 862#endif
615 863

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines