ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.60 by root, Tue Jan 22 15:53:01 2008 UTC vs.
Revision 1.101 by root, Wed Apr 28 19:49:50 2010 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Deliantra is free software: you can redistribute it and/or modify 6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * it under the terms of the GNU General Public License as published by 7 * the terms of the Affero GNU General Public License as published by the
8 * the Free Software Foundation, either version 3 of the License, or 8 * Free Software Foundation, either version 3 of the License, or (at your
9 * (at your option) any later version. 9 * option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the Affero GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
18 * 19 *
19 * The authors can be reached via e-mail to <support@deliantra.net> 20 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 21 */
21 22
22#ifndef UTIL_H__ 23#ifndef UTIL_H__
23#define UTIL_H__ 24#define UTIL_H__
24 25
25//#define PREFER_MALLOC 26#include <compiler.h>
26#define DEBUG_SALLOC
27 27
28#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30# define expect(expr,value) __builtin_expect ((expr),(value)) 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32#else
33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
36#endif
37 31
38#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4) 32#include <pthread.h>
39# define decltype(x) typeof(x)
40#endif
41
42// put into ifs if you are very sure that the expression
43// is mostly true or mosty false. note that these return
44// booleans, not the expression.
45#define expect_false(expr) expect ((expr) != 0, 0)
46#define expect_true(expr) expect ((expr) != 0, 1)
47 33
48#include <cstddef> 34#include <cstddef>
49#include <cmath> 35#include <cmath>
50#include <new> 36#include <new>
51#include <vector> 37#include <vector>
53#include <glib.h> 39#include <glib.h>
54 40
55#include <shstr.h> 41#include <shstr.h>
56#include <traits.h> 42#include <traits.h>
57 43
58#ifdef DEBUG_SALLOC 44#if DEBUG_SALLOC
59# define g_slice_alloc0(s) debug_slice_alloc0(s) 45# define g_slice_alloc0(s) debug_slice_alloc0(s)
60# define g_slice_alloc(s) debug_slice_alloc(s) 46# define g_slice_alloc(s) debug_slice_alloc(s)
61# define g_slice_free1(s,p) debug_slice_free1(s,p) 47# define g_slice_free1(s,p) debug_slice_free1(s,p)
62void *g_slice_alloc (unsigned long size); 48void *g_slice_alloc (unsigned long size);
63void *g_slice_alloc0 (unsigned long size); 49void *g_slice_alloc0 (unsigned long size);
64void g_slice_free1 (unsigned long size, void *ptr); 50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
65#endif 55#endif
66 56
67// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
68#define auto(var,expr) decltype(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
69 59
60// could use the sizeof (arr) /( sizeof (arr [0]) here, but C++ is
61// much more obfuscated... :)
62
63template<typename T, int N>
64inline int array_length (const T (&arr)[N])
65{
66 return N;
67}
68
70// very ugly macro that basicaly declares and initialises a variable 69// very ugly macro that basically declares and initialises a variable
71// that is in scope for the next statement only 70// that is in scope for the next statement only
72// works only for stuff that can be assigned 0 and converts to false 71// works only for stuff that can be assigned 0 and converts to false
73// (note: works great for pointers) 72// (note: works great for pointers)
74// most ugly macro I ever wrote 73// most ugly macro I ever wrote
75#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 74#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
80 79
81// in range excluding end 80// in range excluding end
82#define IN_RANGE_EXC(val,beg,end) \ 81#define IN_RANGE_EXC(val,beg,end) \
83 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 82 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
84 83
84void cleanup (const char *cause, bool make_core = false);
85void fork_abort (const char *msg); 85void fork_abort (const char *msg);
86 86
87// rationale for using (U) not (T) is to reduce signed/unsigned issues, 87// rationale for using (U) not (T) is to reduce signed/unsigned issues,
88// as a is often a constant while b is the variable. it is still a bug, though. 88// as a is often a constant while b is the variable. it is still a bug, though.
89template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 89template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
90template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 90template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
91template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 91template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
92 92
93template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
94template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
95template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
96
93template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 97template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
94 98
99template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
100template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
101
102// sign returns -1 or +1
103template<typename T>
104static inline T sign (T v) { return v < 0 ? -1 : +1; }
105// relies on 2c representation
106template<>
107inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
108
109// sign0 returns -1, 0 or +1
110template<typename T>
111static inline T sign0 (T v) { return v ? sign (v) : 0; }
112
113template<typename T, typename U>
114static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
115
116// div* only work correctly for div > 0
117// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
118template<typename T> static inline T div (T val, T div)
119{
120 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
121}
122// div, round-up
123template<typename T> static inline T div_ru (T val, T div)
124{
125 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126}
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div)
129{
130 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131}
132
133// lerp* only work correctly for min_in < max_in
134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
95template<typename T> 135template<typename T>
96static inline T 136static inline T
97lerp (T val, T min_in, T max_in, T min_out, T max_out) 137lerp (T val, T min_in, T max_in, T min_out, T max_out)
98{ 138{
99 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140}
141
142// lerp, round-down
143template<typename T>
144static inline T
145lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-up
151template<typename T>
152static inline T
153lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
100} 156}
101 157
102// lots of stuff taken from FXT 158// lots of stuff taken from FXT
103 159
104/* Rotate right. This is used in various places for checksumming */ 160/* Rotate right. This is used in various places for checksumming */
142 int32_t d = b - a; 198 int32_t d = b - a;
143 d &= d >> 31; 199 d &= d >> 31;
144 return b - d; 200 return b - d;
145} 201}
146 202
147// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
148// on modern cpus 204// on modern cpus
149inline int 205inline int
150isqrt (int n) 206isqrt (int n)
151{ 207{
152 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
153} 223}
154 224
155// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
156#if 0 226#if 0
157// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
182absdir (int d) 252absdir (int d)
183{ 253{
184 return ((d - 1) & 7) + 1; 254 return ((d - 1) & 7) + 1;
185} 255}
186 256
257// avoid ctz name because netbsd or freebsd spams it's namespace with it
258#if GCC_VERSION(3,4)
259static inline int least_significant_bit (uint32_t x)
260{
261 return __builtin_ctz (x);
262}
263#else
264int least_significant_bit (uint32_t x);
265#endif
266
267#define for_all_bits_sparse_32(mask, idxvar) \
268 for (uint32_t idxvar, mask_ = mask; \
269 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
270
187extern size_t slice_alloc; // statistics 271extern ssize_t slice_alloc; // statistics
272
273void *salloc_ (int n) throw (std::bad_alloc);
274void *salloc_ (int n, void *src) throw (std::bad_alloc);
275
276// strictly the same as g_slice_alloc, but never returns 0
277template<typename T>
278inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
279
280// also copies src into the new area, like "memdup"
281// if src is 0, clears the memory
282template<typename T>
283inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
284
285// clears the memory
286template<typename T>
287inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
288
289// for symmetry
290template<typename T>
291inline void sfree (T *ptr, int n = 1) throw ()
292{
293 if (expect_true (ptr))
294 {
295 slice_alloc -= n * sizeof (T);
296 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
297 g_slice_free1 (n * sizeof (T), (void *)ptr);
298 assert (slice_alloc >= 0);//D
299 }
300}
301
302// nulls the pointer
303template<typename T>
304inline void sfree0 (T *&ptr, int n = 1) throw ()
305{
306 sfree<T> (ptr, n);
307 ptr = 0;
308}
188 309
189// makes dynamically allocated objects zero-initialised 310// makes dynamically allocated objects zero-initialised
190struct zero_initialised 311struct zero_initialised
191{ 312{
192 void *operator new (size_t s, void *p) 313 void *operator new (size_t s, void *p)
195 return p; 316 return p;
196 } 317 }
197 318
198 void *operator new (size_t s) 319 void *operator new (size_t s)
199 { 320 {
200 slice_alloc += s;
201 return g_slice_alloc0 (s); 321 return salloc0<char> (s);
202 } 322 }
203 323
204 void *operator new[] (size_t s) 324 void *operator new[] (size_t s)
205 { 325 {
206 slice_alloc += s;
207 return g_slice_alloc0 (s); 326 return salloc0<char> (s);
208 } 327 }
209 328
210 void operator delete (void *p, size_t s) 329 void operator delete (void *p, size_t s)
211 { 330 {
212 slice_alloc -= s; 331 sfree ((char *)p, s);
213 g_slice_free1 (s, p);
214 } 332 }
215 333
216 void operator delete[] (void *p, size_t s) 334 void operator delete[] (void *p, size_t s)
217 { 335 {
218 slice_alloc -= s; 336 sfree ((char *)p, s);
219 g_slice_free1 (s, p);
220 } 337 }
221}; 338};
222 339
223void *salloc_ (int n) throw (std::bad_alloc); 340// makes dynamically allocated objects zero-initialised
224void *salloc_ (int n, void *src) throw (std::bad_alloc); 341struct slice_allocated
225
226// strictly the same as g_slice_alloc, but never returns 0
227template<typename T>
228inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
229
230// also copies src into the new area, like "memdup"
231// if src is 0, clears the memory
232template<typename T>
233inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
234
235// clears the memory
236template<typename T>
237inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
238
239// for symmetry
240template<typename T>
241inline void sfree (T *ptr, int n = 1) throw ()
242{ 342{
243#ifdef PREFER_MALLOC 343 void *operator new (size_t s, void *p)
244 free (ptr); 344 {
245#else 345 return p;
246 slice_alloc -= n * sizeof (T); 346 }
247 g_slice_free1 (n * sizeof (T), (void *)ptr); 347
248#endif 348 void *operator new (size_t s)
249} 349 {
350 return salloc<char> (s);
351 }
352
353 void *operator new[] (size_t s)
354 {
355 return salloc<char> (s);
356 }
357
358 void operator delete (void *p, size_t s)
359 {
360 sfree ((char *)p, s);
361 }
362
363 void operator delete[] (void *p, size_t s)
364 {
365 sfree ((char *)p, s);
366 }
367};
250 368
251// a STL-compatible allocator that uses g_slice 369// a STL-compatible allocator that uses g_slice
252// boy, this is verbose 370// boy, this is verbose
253template<typename Tp> 371template<typename Tp>
254struct slice_allocator 372struct slice_allocator
266 { 384 {
267 typedef slice_allocator<U> other; 385 typedef slice_allocator<U> other;
268 }; 386 };
269 387
270 slice_allocator () throw () { } 388 slice_allocator () throw () { }
271 slice_allocator (const slice_allocator &o) throw () { } 389 slice_allocator (const slice_allocator &) throw () { }
272 template<typename Tp2> 390 template<typename Tp2>
273 slice_allocator (const slice_allocator<Tp2> &) throw () { } 391 slice_allocator (const slice_allocator<Tp2> &) throw () { }
274 392
275 ~slice_allocator () { } 393 ~slice_allocator () { }
276 394
285 void deallocate (pointer p, size_type n) 403 void deallocate (pointer p, size_type n)
286 { 404 {
287 sfree<Tp> (p, n); 405 sfree<Tp> (p, n);
288 } 406 }
289 407
290 size_type max_size ()const throw () 408 size_type max_size () const throw ()
291 { 409 {
292 return size_t (-1) / sizeof (Tp); 410 return size_t (-1) / sizeof (Tp);
293 } 411 }
294 412
295 void construct (pointer p, const Tp &val) 413 void construct (pointer p, const Tp &val)
306// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 424// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
307// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 425// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
308// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 426// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
309struct tausworthe_random_generator 427struct tausworthe_random_generator
310{ 428{
311 // generator
312 uint32_t state [4]; 429 uint32_t state [4];
313 430
314 void operator =(const tausworthe_random_generator &src) 431 void operator =(const tausworthe_random_generator &src)
315 { 432 {
316 state [0] = src.state [0]; 433 state [0] = src.state [0];
319 state [3] = src.state [3]; 436 state [3] = src.state [3];
320 } 437 }
321 438
322 void seed (uint32_t seed); 439 void seed (uint32_t seed);
323 uint32_t next (); 440 uint32_t next ();
441};
324 442
325 // uniform distribution 443// Xorshift RNGs, George Marsaglia
444// http://www.jstatsoft.org/v08/i14/paper
445// this one is about 40% faster than the tausworthe one above (i.e. not much),
446// despite the inlining, and has the issue of only creating 2**32-1 numbers.
447// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
448struct xorshift_random_generator
449{
450 uint32_t x, y;
451
452 void operator =(const xorshift_random_generator &src)
453 {
454 x = src.x;
455 y = src.y;
456 }
457
458 void seed (uint32_t seed)
459 {
460 x = seed;
461 y = seed * 69069U;
462 }
463
464 uint32_t next ()
465 {
466 uint32_t t = x ^ (x << 10);
467 x = y;
468 y = y ^ (y >> 13) ^ t ^ (t >> 10);
469 return y;
470 }
471};
472
473template<class generator>
474struct random_number_generator : generator
475{
476 // uniform distribution, 0 .. max (0, num - 1)
326 uint32_t operator ()(uint32_t num) 477 uint32_t operator ()(uint32_t num)
327 { 478 {
328 return is_constant (num) 479 return !is_constant (num) ? get_range (num) // non-constant
329 ? (next () * (uint64_t)num) >> 32U 480 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
330 : get_range (num); 481 : this->next () & (num - 1); // constant, power-of-two
331 } 482 }
332 483
333 // return a number within (min .. max) 484 // return a number within the closed interval [min .. max]
334 int operator () (int r_min, int r_max) 485 int operator () (int r_min, int r_max)
335 { 486 {
336 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max 487 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
337 ? r_min + operator ()(r_max - r_min + 1) 488 ? r_min + operator ()(r_max - r_min + 1)
338 : get_range (r_min, r_max); 489 : get_range (r_min, r_max);
339 } 490 }
340 491
492 // return a number within the closed interval [0..1]
341 double operator ()() 493 double operator ()()
342 { 494 {
343 return this->next () / (double)0xFFFFFFFFU; 495 return this->next () / (double)0xFFFFFFFFU;
344 } 496 }
345 497
346protected: 498protected:
347 uint32_t get_range (uint32_t r_max); 499 uint32_t get_range (uint32_t r_max);
348 int get_range (int r_min, int r_max); 500 int get_range (int r_min, int r_max);
349}; 501};
350 502
351typedef tausworthe_random_generator rand_gen; 503typedef random_number_generator<tausworthe_random_generator> rand_gen;
352 504
353extern rand_gen rndm; 505extern rand_gen rndm, rmg_rndm;
354 506
355INTERFACE_CLASS (attachable) 507INTERFACE_CLASS (attachable)
356struct refcnt_base 508struct refcnt_base
357{ 509{
358 typedef int refcnt_t; 510 typedef int refcnt_t;
421typedef refptr<object> object_ptr; 573typedef refptr<object> object_ptr;
422typedef refptr<archetype> arch_ptr; 574typedef refptr<archetype> arch_ptr;
423typedef refptr<client> client_ptr; 575typedef refptr<client> client_ptr;
424typedef refptr<player> player_ptr; 576typedef refptr<player> player_ptr;
425 577
578#define STRHSH_NULL 2166136261
579
580static inline uint32_t
581strhsh (const char *s)
582{
583 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
584 // it is about twice as fast as the one-at-a-time one,
585 // with good distribution.
586 // FNV-1a is faster on many cpus because the multiplication
587 // runs concurrently with the looping logic.
588 uint32_t hash = STRHSH_NULL;
589
590 while (*s)
591 hash = (hash ^ *s++) * 16777619U;
592
593 return hash;
594}
595
596static inline uint32_t
597memhsh (const char *s, size_t len)
598{
599 uint32_t hash = STRHSH_NULL;
600
601 while (len--)
602 hash = (hash ^ *s++) * 16777619U;
603
604 return hash;
605}
606
426struct str_hash 607struct str_hash
427{ 608{
428 std::size_t operator ()(const char *s) const 609 std::size_t operator ()(const char *s) const
429 { 610 {
430 unsigned long hash = 0;
431
432 /* use the one-at-a-time hash function, which supposedly is
433 * better than the djb2-like one used by perl5.005, but
434 * certainly is better then the bug used here before.
435 * see http://burtleburtle.net/bob/hash/doobs.html
436 */
437 while (*s)
438 {
439 hash += *s++;
440 hash += hash << 10;
441 hash ^= hash >> 6;
442 }
443
444 hash += hash << 3;
445 hash ^= hash >> 11;
446 hash += hash << 15;
447
448 return hash; 611 return strhsh (s);
612 }
613
614 std::size_t operator ()(const shstr &s) const
615 {
616 return strhsh (s);
449 } 617 }
450}; 618};
451 619
452struct str_equal 620struct str_equal
453{ 621{
546 erase (&obj); 714 erase (&obj);
547 } 715 }
548}; 716};
549 717
550// basically does what strncpy should do, but appends "..." to strings exceeding length 718// basically does what strncpy should do, but appends "..." to strings exceeding length
719// returns the number of bytes actually used (including \0)
551void assign (char *dst, const char *src, int maxlen); 720int assign (char *dst, const char *src, int maxsize);
552 721
553// type-safe version of assign 722// type-safe version of assign
554template<int N> 723template<int N>
555inline void assign (char (&dst)[N], const char *src) 724inline int assign (char (&dst)[N], const char *src)
556{ 725{
557 assign ((char *)&dst, src, N); 726 return assign ((char *)&dst, src, N);
558} 727}
559 728
560typedef double tstamp; 729typedef double tstamp;
561 730
562// return current time as timestamp 731// return current time as timestamp
563tstamp now (); 732tstamp now ();
564 733
565int similar_direction (int a, int b); 734int similar_direction (int a, int b);
566 735
567// like sprintf, but returns a "static" buffer 736// like v?sprintf, but returns a "static" buffer
568const char *format (const char *format, ...); 737char *vformat (const char *format, va_list ap);
738char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
569 739
740// safety-check player input which will become object->msg
741bool msg_is_safe (const char *msg);
742
743/////////////////////////////////////////////////////////////////////////////
744// threads, very very thin wrappers around pthreads
745
746struct thread
747{
748 pthread_t id;
749
750 void start (void *(*start_routine)(void *), void *arg = 0);
751
752 void cancel ()
753 {
754 pthread_cancel (id);
755 }
756
757 void *join ()
758 {
759 void *ret;
760
761 if (pthread_join (id, &ret))
762 cleanup ("pthread_join failed", 1);
763
764 return ret;
765 }
766};
767
768// note that mutexes are not classes
769typedef pthread_mutex_t smutex;
770
771#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
772 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
773#else
774 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
570#endif 775#endif
571 776
777#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
778#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
779#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
780
781typedef pthread_cond_t scond;
782
783#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
784#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
785#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
786#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
787
788#endif
789

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines