ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.108 by root, Wed May 26 19:11:43 2010 UTC vs.
Revision 1.130 by root, Wed Dec 5 19:03:27 2018 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Deliantra is free software: you can redistribute it and/or modify it under 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the 8 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the Affero GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see 18 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>. 19 * <http://www.gnu.org/licenses/>.
19 * 20 *
20 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
21 */ 22 */
22 23
23#ifndef UTIL_H__ 24#ifndef UTIL_H__
24#define UTIL_H__ 25#define UTIL_H__
35#include <cmath> 36#include <cmath>
36#include <new> 37#include <new>
37#include <vector> 38#include <vector>
38 39
39#include <glib.h> 40#include <glib.h>
41
42#include <flat_hash_map.hpp>
40 43
41#include <shstr.h> 44#include <shstr.h>
42#include <traits.h> 45#include <traits.h>
43 46
44#if DEBUG_SALLOC 47#if DEBUG_SALLOC
52# define g_slice_alloc0(s) calloc (1, (s)) 55# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s)) 56# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p)) 57# define g_slice_free1(s,p) free ((p))
55#endif 58#endif
56 59
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr)
59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
71// very ugly macro that basically declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
72// that is in scope for the next statement only 61// that is in scope for the next statement only
73// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
74// (note: works great for pointers) 63// (note: works great for pointers)
75// most ugly macro I ever wrote 64// most ugly macro I ever wrote
81 70
82// in range excluding end 71// in range excluding end
83#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85 74
86void cleanup (const char *cause, bool make_core = false); 75ecb_cold void cleanup (const char *cause, bool make_core = false);
87void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
88 77
89// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
90// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
91template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
92template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94 83
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); } 84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); } 85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); } 86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
114 103
115// sign0 returns -1, 0 or +1 104// sign0 returns -1, 0 or +1
116template<typename T> 105template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; } 106static inline T sign0 (T v) { return v ? sign (v) : 0; }
118 107
108//clashes with C++0x
119template<typename T, typename U> 109template<typename T, typename U>
120static inline T copysign (T a, U b) { return a > 0 ? b : -b; } 110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
121 111
122// div* only work correctly for div > 0 112// div* only work correctly for div > 0
123// div, with correct rounding (< 0.5 downwards, >=0.5 upwards) 113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124template<typename T> static inline T div (T val, T div) 114template<typename T> static inline T div (T val, T div)
125{ 115{
126 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div; 116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
127} 117}
128 118
129template<> inline float div (float val, float div) { return val / div; } 119template<> inline float div (float val, float div) { return val / div; }
130template<> inline double div (double val, double div) { return val / div; } 120template<> inline double div (double val, double div) { return val / div; }
131 121
132// div, round-up 122// div, round-up
133template<typename T> static inline T div_ru (T val, T div) 123template<typename T> static inline T div_ru (T val, T div)
134{ 124{
135 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div; 125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
136} 126}
137// div, round-down 127// div, round-down
138template<typename T> static inline T div_rd (T val, T div) 128template<typename T> static inline T div_rd (T val, T div)
139{ 129{
140 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div; 130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
141} 131}
142 132
143// lerp* only work correctly for min_in < max_in 133// lerp* only work correctly for min_in < max_in
144// Linear intERPolate, scales val from min_in..max_in to min_out..max_out 134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
145template<typename T> 135template<typename T>
236#if 0 226#if 0
237// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
238#else 228#else
239// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
240#endif 230#endif
241inline int 231inline int
242idistance (int dx, int dy) 232idistance (int dx, int dy)
243{ 233{
244 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
245 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
246 236
247#if 0 237#if 0
248 return dx_ > dy_ 238 return dx_ > dy_
251#else 241#else
252 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
253#endif 243#endif
254} 244}
255 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
256/* 266/*
257 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
258 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
259 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
260 */ 270 */
262absdir (int d) 272absdir (int d)
263{ 273{
264 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
265} 275}
266 276
267// avoid ctz name because netbsd or freebsd spams it's namespace with it
268#if GCC_VERSION(3,4)
269static inline int least_significant_bit (uint32_t x)
270{
271 return __builtin_ctz (x);
272}
273#else
274int least_significant_bit (uint32_t x);
275#endif
276
277#define for_all_bits_sparse_32(mask, idxvar) \ 277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \ 278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);) 279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280 280
281extern ssize_t slice_alloc; // statistics 281extern ssize_t slice_alloc; // statistics
282 282
283void *salloc_ (int n) throw (std::bad_alloc); 283void *salloc_ (int n);
284void *salloc_ (int n, void *src) throw (std::bad_alloc); 284void *salloc_ (int n, void *src);
285 285
286// strictly the same as g_slice_alloc, but never returns 0 286// strictly the same as g_slice_alloc, but never returns 0
287template<typename T> 287template<typename T>
288inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); } 288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
289 289
290// also copies src into the new area, like "memdup" 290// also copies src into the new area, like "memdup"
291// if src is 0, clears the memory 291// if src is 0, clears the memory
292template<typename T> 292template<typename T>
293inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); } 293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294 294
295// clears the memory 295// clears the memory
296template<typename T> 296template<typename T>
297inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); } 297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
298 298
299// for symmetry 299// for symmetry
300template<typename T> 300template<typename T>
301inline void sfree (T *ptr, int n = 1) throw () 301inline void sfree (T *ptr, int n = 1) noexcept
302{ 302{
303 if (expect_true (ptr)) 303 if (ecb_expect_true (ptr))
304 { 304 {
305 slice_alloc -= n * sizeof (T); 305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T)); 306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr); 307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 assert (slice_alloc >= 0);//D
309 } 308 }
310} 309}
311 310
312// nulls the pointer 311// nulls the pointer
313template<typename T> 312template<typename T>
314inline void sfree0 (T *&ptr, int n = 1) throw () 313inline void sfree0 (T *&ptr, int n = 1) noexcept
315{ 314{
316 sfree<T> (ptr, n); 315 sfree<T> (ptr, n);
317 ptr = 0; 316 ptr = 0;
318} 317}
319 318
387 typedef const Tp *const_pointer; 386 typedef const Tp *const_pointer;
388 typedef Tp &reference; 387 typedef Tp &reference;
389 typedef const Tp &const_reference; 388 typedef const Tp &const_reference;
390 typedef Tp value_type; 389 typedef Tp value_type;
391 390
392 template <class U> 391 template <class U>
393 struct rebind 392 struct rebind
394 { 393 {
395 typedef slice_allocator<U> other; 394 typedef slice_allocator<U> other;
396 }; 395 };
397 396
398 slice_allocator () throw () { } 397 slice_allocator () noexcept { }
399 slice_allocator (const slice_allocator &) throw () { } 398 slice_allocator (const slice_allocator &) noexcept { }
400 template<typename Tp2> 399 template<typename Tp2>
401 slice_allocator (const slice_allocator<Tp2> &) throw () { } 400 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
402 401
403 ~slice_allocator () { } 402 ~slice_allocator () { }
404 403
405 pointer address (reference x) const { return &x; } 404 pointer address (reference x) const { return &x; }
406 const_pointer address (const_reference x) const { return &x; } 405 const_pointer address (const_reference x) const { return &x; }
413 void deallocate (pointer p, size_type n) 412 void deallocate (pointer p, size_type n)
414 { 413 {
415 sfree<Tp> (p, n); 414 sfree<Tp> (p, n);
416 } 415 }
417 416
418 size_type max_size () const throw () 417 size_type max_size () const noexcept
419 { 418 {
420 return size_t (-1) / sizeof (Tp); 419 return size_t (-1) / sizeof (Tp);
421 } 420 }
422 421
423 void construct (pointer p, const Tp &val) 422 void construct (pointer p, const Tp &val)
429 { 428 {
430 p->~Tp (); 429 p->~Tp ();
431 } 430 }
432}; 431};
433 432
434// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 433// basically a memory area, but refcounted
435// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 434struct refcnt_buf
436// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
437struct tausworthe_random_generator
438{ 435{
439 uint32_t state [4]; 436 char *data;
440 437
441 void operator =(const tausworthe_random_generator &src) 438 refcnt_buf (size_t size = 0);
442 { 439 refcnt_buf (void *data, size_t size);
443 state [0] = src.state [0];
444 state [1] = src.state [1];
445 state [2] = src.state [2];
446 state [3] = src.state [3];
447 }
448 440
449 void seed (uint32_t seed); 441 refcnt_buf (const refcnt_buf &src)
450 uint32_t next ();
451};
452
453// Xorshift RNGs, George Marsaglia
454// http://www.jstatsoft.org/v08/i14/paper
455// this one is about 40% faster than the tausworthe one above (i.e. not much),
456// despite the inlining, and has the issue of only creating 2**32-1 numbers.
457// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
458struct xorshift_random_generator
459{
460 uint32_t x, y;
461
462 void operator =(const xorshift_random_generator &src)
463 { 442 {
464 x = src.x; 443 data = src.data;
465 y = src.y; 444 inc ();
466 } 445 }
467 446
468 void seed (uint32_t seed) 447 ~refcnt_buf ();
469 {
470 x = seed;
471 y = seed * 69069U;
472 }
473 448
474 uint32_t next () 449 refcnt_buf &operator =(const refcnt_buf &src);
450
451 operator char *()
475 { 452 {
476 uint32_t t = x ^ (x << 10);
477 x = y;
478 y = y ^ (y >> 13) ^ t ^ (t >> 10);
479 return y; 453 return data;
480 } 454 }
481};
482 455
483template<class generator> 456 size_t size () const
484struct random_number_generator : generator
485{
486 // uniform distribution, [0 .. num - 1]
487 uint32_t operator ()(uint32_t num)
488 { 457 {
489 return !is_constant (num) ? get_range (num) // non-constant 458 return _size ();
490 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
491 : this->next () & (num - 1); // constant, power-of-two
492 }
493
494 // return a number within the closed interval [min .. max]
495 int operator () (int r_min, int r_max)
496 {
497 return is_constant (r_min <= r_max) && r_min <= r_max
498 ? r_min + operator ()(r_max - r_min + 1)
499 : get_range (r_min, r_max);
500 }
501
502 // return a number within the half-open interval [0..1[
503 double operator ()()
504 {
505 return this->next () / (double)0x100000000ULL;
506 } 459 }
507 460
508protected: 461protected:
509 uint32_t get_range (uint32_t r_max); 462 enum {
510 int get_range (int r_min, int r_max); 463 overhead = sizeof (uint32_t) * 2
511}; 464 };
512 465
513typedef random_number_generator<tausworthe_random_generator> rand_gen; 466 uint32_t &_size () const
467 {
468 return ((unsigned int *)data)[-2];
469 }
514 470
515extern rand_gen rndm, rmg_rndm; 471 uint32_t &_refcnt () const
472 {
473 return ((unsigned int *)data)[-1];
474 }
475
476 void _alloc (uint32_t size)
477 {
478 data = ((char *)salloc<char> (size + overhead)) + overhead;
479 _size () = size;
480 _refcnt () = 1;
481 }
482
483 void _dealloc ();
484
485 void inc ()
486 {
487 ++_refcnt ();
488 }
489
490 void dec ()
491 {
492 if (!--_refcnt ())
493 _dealloc ();
494 }
495};
516 496
517INTERFACE_CLASS (attachable) 497INTERFACE_CLASS (attachable)
518struct refcnt_base 498struct refcnt_base
519{ 499{
520 typedef int refcnt_t; 500 typedef int refcnt_t;
535 // p if not null 515 // p if not null
536 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; } 516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
537 517
538 void refcnt_dec () 518 void refcnt_dec ()
539 { 519 {
540 if (!is_constant (p)) 520 if (!ecb_is_constant (p))
541 --*refcnt_ref (); 521 --*refcnt_ref ();
542 else if (p) 522 else if (p)
543 --p->refcnt; 523 --p->refcnt;
544 } 524 }
545 525
546 void refcnt_inc () 526 void refcnt_inc ()
547 { 527 {
548 if (!is_constant (p)) 528 if (!ecb_is_constant (p))
549 ++*refcnt_ref (); 529 ++*refcnt_ref ();
550 else if (p) 530 else if (p)
551 ++p->refcnt; 531 ++p->refcnt;
552 } 532 }
553 533
594 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/) 574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
595 // it is about twice as fast as the one-at-a-time one, 575 // it is about twice as fast as the one-at-a-time one,
596 // with good distribution. 576 // with good distribution.
597 // FNV-1a is faster on many cpus because the multiplication 577 // FNV-1a is faster on many cpus because the multiplication
598 // runs concurrently with the looping logic. 578 // runs concurrently with the looping logic.
579 // we modify the hash a bit to improve its distribution
599 uint32_t hash = STRHSH_NULL; 580 uint32_t hash = STRHSH_NULL;
600 581
601 while (*s) 582 while (*s)
602 hash = (hash ^ *s++) * 16777619U; 583 hash = (hash ^ *s++) * 16777619U;
603 584
604 return hash; 585 return hash ^ (hash >> 16);
605} 586}
606 587
607static inline uint32_t 588static inline uint32_t
608memhsh (const char *s, size_t len) 589memhsh (const char *s, size_t len)
609{ 590{
610 uint32_t hash = STRHSH_NULL; 591 uint32_t hash = STRHSH_NULL;
611 592
612 while (len--) 593 while (len--)
613 hash = (hash ^ *s++) * 16777619U; 594 hash = (hash ^ *s++) * 16777619U;
614 595
615 return hash; 596 return hash;
616} 597}
624 605
625 std::size_t operator ()(const shstr &s) const 606 std::size_t operator ()(const shstr &s) const
626 { 607 {
627 return strhsh (s); 608 return strhsh (s);
628 } 609 }
610
611 typedef ska::power_of_two_hash_policy hash_policy;
629}; 612};
630 613
631struct str_equal 614struct str_equal
632{ 615{
633 bool operator ()(const char *a, const char *b) const 616 bool operator ()(const char *a, const char *b) const
659 } 642 }
660}; 643};
661 644
662// This container blends advantages of linked lists 645// This container blends advantages of linked lists
663// (efficiency) with vectors (random access) by 646// (efficiency) with vectors (random access) by
664// by using an unordered vector and storing the vector 647// using an unordered vector and storing the vector
665// index inside the object. 648// index inside the object.
666// 649//
667// + memory-efficient on most 64 bit archs 650// + memory-efficient on most 64 bit archs
668// + O(1) insert/remove 651// + O(1) insert/remove
669// + free unique (but varying) id for inserted objects 652// + free unique (but varying) id for inserted objects
706 insert (&obj); 689 insert (&obj);
707 } 690 }
708 691
709 void erase (T *obj) 692 void erase (T *obj)
710 { 693 {
711 unsigned int pos = obj->*indexmember; 694 object_vector_index pos = obj->*indexmember;
712 obj->*indexmember = 0; 695 obj->*indexmember = 0;
713 696
714 if (pos < this->size ()) 697 if (pos < this->size ())
715 { 698 {
716 (*this)[pos - 1] = (*this)[this->size () - 1]; 699 (*this)[pos - 1] = (*this)[this->size () - 1];
724 { 707 {
725 erase (&obj); 708 erase (&obj);
726 } 709 }
727}; 710};
728 711
712/////////////////////////////////////////////////////////////////////////////
713
714// something like a vector or stack, but without
715// out of bounds checking
716template<typename T>
717struct fixed_stack
718{
719 T *data;
720 int size;
721 int max;
722
723 fixed_stack ()
724 : size (0), data (0)
725 {
726 }
727
728 fixed_stack (int max)
729 : size (0), max (max)
730 {
731 data = salloc<T> (max);
732 }
733
734 void reset (int new_max)
735 {
736 sfree (data, max);
737 size = 0;
738 max = new_max;
739 data = salloc<T> (max);
740 }
741
742 void free ()
743 {
744 sfree (data, max);
745 data = 0;
746 }
747
748 ~fixed_stack ()
749 {
750 sfree (data, max);
751 }
752
753 T &operator[](int idx)
754 {
755 return data [idx];
756 }
757
758 void push (T v)
759 {
760 data [size++] = v;
761 }
762
763 T &pop ()
764 {
765 return data [--size];
766 }
767
768 T remove (int idx)
769 {
770 T v = data [idx];
771
772 data [idx] = data [--size];
773
774 return v;
775 }
776};
777
778/////////////////////////////////////////////////////////////////////////////
779
729// basically does what strncpy should do, but appends "..." to strings exceeding length 780// basically does what strncpy should do, but appends "..." to strings exceeding length
730// returns the number of bytes actually used (including \0) 781// returns the number of bytes actually used (including \0)
731int assign (char *dst, const char *src, int maxsize); 782int assign (char *dst, const char *src, int maxsize);
732 783
733// type-safe version of assign 784// type-safe version of assign
744 795
745int similar_direction (int a, int b); 796int similar_direction (int a, int b);
746 797
747// like v?sprintf, but returns a "static" buffer 798// like v?sprintf, but returns a "static" buffer
748char *vformat (const char *format, va_list ap); 799char *vformat (const char *format, va_list ap);
749char *format (const char *format, ...) attribute ((format (printf, 1, 2))); 800char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
750 801
751// safety-check player input which will become object->msg 802// safety-check player input which will become object->msg
752bool msg_is_safe (const char *msg); 803bool msg_is_safe (const char *msg);
753 804
754///////////////////////////////////////////////////////////////////////////// 805/////////////////////////////////////////////////////////////////////////////

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines