ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.41 by root, Sat Apr 21 22:57:16 2007 UTC vs.
Revision 1.108 by root, Wed May 26 19:11:43 2010 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#include <compiler.h>
5 27
6#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#else 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define is_constant(c) 0 31
10#endif 32#include <pthread.h>
11 33
12#include <cstddef> 34#include <cstddef>
13#include <cmath> 35#include <cmath>
14#include <new> 36#include <new>
15#include <vector> 37#include <vector>
17#include <glib.h> 39#include <glib.h>
18 40
19#include <shstr.h> 41#include <shstr.h>
20#include <traits.h> 42#include <traits.h>
21 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define auto(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
24 59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
25// very ugly macro that basicaly declares and initialises a variable 71// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 72// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 73// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 74// (note: works great for pointers)
29// most ugly macro I ever wrote 75// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 77
32// in range including end 78// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 79#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 81
36// in range excluding end 82// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 83#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 85
86void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 87void fork_abort (const char *msg);
41 88
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 90// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 91template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 92template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119template<typename T, typename U>
120static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
121
122// div* only work correctly for div > 0
123// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124template<typename T> static inline T div (T val, T div)
125{
126 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
127}
128
129template<> inline float div (float val, float div) { return val / div; }
130template<> inline double div (double val, double div) { return val / div; }
131
132// div, round-up
133template<typename T> static inline T div_ru (T val, T div)
134{
135 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
136}
137// div, round-down
138template<typename T> static inline T div_rd (T val, T div)
139{
140 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
141}
142
143// lerp* only work correctly for min_in < max_in
144// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
145template<typename T>
146static inline T
147lerp (T val, T min_in, T max_in, T min_out, T max_out)
148{
149 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
150}
151
152// lerp, round-down
153template<typename T>
154static inline T
155lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
156{
157 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
158}
159
160// lerp, round-up
161template<typename T>
162static inline T
163lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
164{
165 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
166}
49 167
50// lots of stuff taken from FXT 168// lots of stuff taken from FXT
51 169
52/* Rotate right. This is used in various places for checksumming */ 170/* Rotate right. This is used in various places for checksumming */
53//TODO: that sucks, use a better checksum algo 171//TODO: that sucks, use a better checksum algo
90 int32_t d = b - a; 208 int32_t d = b - a;
91 d &= d >> 31; 209 d &= d >> 31;
92 return b - d; 210 return b - d;
93} 211}
94 212
95// this is much faster than crossfires original algorithm 213// this is much faster than crossfire's original algorithm
96// on modern cpus 214// on modern cpus
97inline int 215inline int
98isqrt (int n) 216isqrt (int n)
99{ 217{
100 return (int)sqrtf ((float)n); 218 return (int)sqrtf ((float)n);
219}
220
221// this is kind of like the ^^ operator, if it would exist, without sequence point.
222// more handy than it looks like, due to the implicit !! done on its arguments
223inline bool
224logical_xor (bool a, bool b)
225{
226 return a != b;
227}
228
229inline bool
230logical_implies (bool a, bool b)
231{
232 return a <= b;
101} 233}
102 234
103// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 235// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
104#if 0 236#if 0
105// and has a max. error of 6 in the range -100..+100. 237// and has a max. error of 6 in the range -100..+100.
130absdir (int d) 262absdir (int d)
131{ 263{
132 return ((d - 1) & 7) + 1; 264 return ((d - 1) & 7) + 1;
133} 265}
134 266
267// avoid ctz name because netbsd or freebsd spams it's namespace with it
268#if GCC_VERSION(3,4)
269static inline int least_significant_bit (uint32_t x)
270{
271 return __builtin_ctz (x);
272}
273#else
274int least_significant_bit (uint32_t x);
275#endif
276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
281extern ssize_t slice_alloc; // statistics
282
283void *salloc_ (int n) throw (std::bad_alloc);
284void *salloc_ (int n, void *src) throw (std::bad_alloc);
285
286// strictly the same as g_slice_alloc, but never returns 0
287template<typename T>
288inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
289
290// also copies src into the new area, like "memdup"
291// if src is 0, clears the memory
292template<typename T>
293inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294
295// clears the memory
296template<typename T>
297inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
298
299// for symmetry
300template<typename T>
301inline void sfree (T *ptr, int n = 1) throw ()
302{
303 if (expect_true (ptr))
304 {
305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 assert (slice_alloc >= 0);//D
309 }
310}
311
312// nulls the pointer
313template<typename T>
314inline void sfree0 (T *&ptr, int n = 1) throw ()
315{
316 sfree<T> (ptr, n);
317 ptr = 0;
318}
319
135// makes dynamically allocated objects zero-initialised 320// makes dynamically allocated objects zero-initialised
136struct zero_initialised 321struct zero_initialised
137{ 322{
138 void *operator new (size_t s, void *p) 323 void *operator new (size_t s, void *p)
139 { 324 {
141 return p; 326 return p;
142 } 327 }
143 328
144 void *operator new (size_t s) 329 void *operator new (size_t s)
145 { 330 {
146 return g_slice_alloc0 (s); 331 return salloc0<char> (s);
147 } 332 }
148 333
149 void *operator new[] (size_t s) 334 void *operator new[] (size_t s)
150 { 335 {
151 return g_slice_alloc0 (s); 336 return salloc0<char> (s);
152 } 337 }
153 338
154 void operator delete (void *p, size_t s) 339 void operator delete (void *p, size_t s)
155 { 340 {
156 g_slice_free1 (s, p); 341 sfree ((char *)p, s);
157 } 342 }
158 343
159 void operator delete[] (void *p, size_t s) 344 void operator delete[] (void *p, size_t s)
160 { 345 {
161 g_slice_free1 (s, p); 346 sfree ((char *)p, s);
162 } 347 }
163}; 348};
164 349
165void *salloc_ (int n) throw (std::bad_alloc); 350// makes dynamically allocated objects zero-initialised
166void *salloc_ (int n, void *src) throw (std::bad_alloc); 351struct slice_allocated
167
168// strictly the same as g_slice_alloc, but never returns 0
169template<typename T>
170inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
171
172// also copies src into the new area, like "memdup"
173// if src is 0, clears the memory
174template<typename T>
175inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
176
177// clears the memory
178template<typename T>
179inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
180
181// for symmetry
182template<typename T>
183inline void sfree (T *ptr, int n = 1) throw ()
184{ 352{
185#ifdef PREFER_MALLOC 353 void *operator new (size_t s, void *p)
186 free (ptr); 354 {
187#else 355 return p;
188 g_slice_free1 (n * sizeof (T), (void *)ptr); 356 }
189#endif 357
190} 358 void *operator new (size_t s)
359 {
360 return salloc<char> (s);
361 }
362
363 void *operator new[] (size_t s)
364 {
365 return salloc<char> (s);
366 }
367
368 void operator delete (void *p, size_t s)
369 {
370 sfree ((char *)p, s);
371 }
372
373 void operator delete[] (void *p, size_t s)
374 {
375 sfree ((char *)p, s);
376 }
377};
191 378
192// a STL-compatible allocator that uses g_slice 379// a STL-compatible allocator that uses g_slice
193// boy, this is verbose 380// boy, this is verbose
194template<typename Tp> 381template<typename Tp>
195struct slice_allocator 382struct slice_allocator
207 { 394 {
208 typedef slice_allocator<U> other; 395 typedef slice_allocator<U> other;
209 }; 396 };
210 397
211 slice_allocator () throw () { } 398 slice_allocator () throw () { }
212 slice_allocator (const slice_allocator &o) throw () { } 399 slice_allocator (const slice_allocator &) throw () { }
213 template<typename Tp2> 400 template<typename Tp2>
214 slice_allocator (const slice_allocator<Tp2> &) throw () { } 401 slice_allocator (const slice_allocator<Tp2> &) throw () { }
215 402
216 ~slice_allocator () { } 403 ~slice_allocator () { }
217 404
226 void deallocate (pointer p, size_type n) 413 void deallocate (pointer p, size_type n)
227 { 414 {
228 sfree<Tp> (p, n); 415 sfree<Tp> (p, n);
229 } 416 }
230 417
231 size_type max_size ()const throw () 418 size_type max_size () const throw ()
232 { 419 {
233 return size_t (-1) / sizeof (Tp); 420 return size_t (-1) / sizeof (Tp);
234 } 421 }
235 422
236 void construct (pointer p, const Tp &val) 423 void construct (pointer p, const Tp &val)
247// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 434// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
248// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 435// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
249// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 436// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
250struct tausworthe_random_generator 437struct tausworthe_random_generator
251{ 438{
252 // generator
253 uint32_t state [4]; 439 uint32_t state [4];
254 440
255 void operator =(const tausworthe_random_generator &src) 441 void operator =(const tausworthe_random_generator &src)
256 { 442 {
257 state [0] = src.state [0]; 443 state [0] = src.state [0];
260 state [3] = src.state [3]; 446 state [3] = src.state [3];
261 } 447 }
262 448
263 void seed (uint32_t seed); 449 void seed (uint32_t seed);
264 uint32_t next (); 450 uint32_t next ();
451};
265 452
453// Xorshift RNGs, George Marsaglia
454// http://www.jstatsoft.org/v08/i14/paper
455// this one is about 40% faster than the tausworthe one above (i.e. not much),
456// despite the inlining, and has the issue of only creating 2**32-1 numbers.
457// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
458struct xorshift_random_generator
459{
460 uint32_t x, y;
461
462 void operator =(const xorshift_random_generator &src)
463 {
464 x = src.x;
465 y = src.y;
466 }
467
468 void seed (uint32_t seed)
469 {
470 x = seed;
471 y = seed * 69069U;
472 }
473
474 uint32_t next ()
475 {
476 uint32_t t = x ^ (x << 10);
477 x = y;
478 y = y ^ (y >> 13) ^ t ^ (t >> 10);
479 return y;
480 }
481};
482
483template<class generator>
484struct random_number_generator : generator
485{
266 // uniform distribution 486 // uniform distribution, [0 .. num - 1]
267 uint32_t operator ()(uint32_t r_max) 487 uint32_t operator ()(uint32_t num)
268 { 488 {
269 return is_constant (r_max) 489 return !is_constant (num) ? get_range (num) // non-constant
270 ? (next () * (uint64_t)r_max) >> 32U 490 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
271 : get_range (r_max); 491 : this->next () & (num - 1); // constant, power-of-two
272 } 492 }
273 493
274 // return a number within (min .. max) 494 // return a number within the closed interval [min .. max]
275 int operator () (int r_min, int r_max) 495 int operator () (int r_min, int r_max)
276 { 496 {
277 return is_constant (r_min) && is_constant (r_max) 497 return is_constant (r_min <= r_max) && r_min <= r_max
278 ? r_min + operator ()(max (r_max - r_min + 1, 1)) 498 ? r_min + operator ()(r_max - r_min + 1)
279 : get_range (r_min, r_max); 499 : get_range (r_min, r_max);
280 } 500 }
281 501
502 // return a number within the half-open interval [0..1[
282 double operator ()() 503 double operator ()()
283 { 504 {
284 return this->next () / (double)0xFFFFFFFFU; 505 return this->next () / (double)0x100000000ULL;
285 } 506 }
286 507
287protected: 508protected:
288 uint32_t get_range (uint32_t r_max); 509 uint32_t get_range (uint32_t r_max);
289 int get_range (int r_min, int r_max); 510 int get_range (int r_min, int r_max);
290}; 511};
291 512
292typedef tausworthe_random_generator rand_gen; 513typedef random_number_generator<tausworthe_random_generator> rand_gen;
293 514
294extern rand_gen rndm; 515extern rand_gen rndm, rmg_rndm;
516
517INTERFACE_CLASS (attachable)
518struct refcnt_base
519{
520 typedef int refcnt_t;
521 mutable refcnt_t ACC (RW, refcnt);
522
523 MTH void refcnt_inc () const { ++refcnt; }
524 MTH void refcnt_dec () const { --refcnt; }
525
526 refcnt_base () : refcnt (0) { }
527};
528
529// to avoid branches with more advanced compilers
530extern refcnt_base::refcnt_t refcnt_dummy;
295 531
296template<class T> 532template<class T>
297struct refptr 533struct refptr
298{ 534{
535 // p if not null
536 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
537
538 void refcnt_dec ()
539 {
540 if (!is_constant (p))
541 --*refcnt_ref ();
542 else if (p)
543 --p->refcnt;
544 }
545
546 void refcnt_inc ()
547 {
548 if (!is_constant (p))
549 ++*refcnt_ref ();
550 else if (p)
551 ++p->refcnt;
552 }
553
299 T *p; 554 T *p;
300 555
301 refptr () : p(0) { } 556 refptr () : p(0) { }
302 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 557 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
303 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 558 refptr (T *p) : p(p) { refcnt_inc (); }
304 ~refptr () { if (p) p->refcnt_dec (); } 559 ~refptr () { refcnt_dec (); }
305 560
306 const refptr<T> &operator =(T *o) 561 const refptr<T> &operator =(T *o)
307 { 562 {
563 // if decrementing ever destroys we need to reverse the order here
308 if (p) p->refcnt_dec (); 564 refcnt_dec ();
309 p = o; 565 p = o;
310 if (p) p->refcnt_inc (); 566 refcnt_inc ();
311
312 return *this; 567 return *this;
313 } 568 }
314 569
315 const refptr<T> &operator =(const refptr<T> o) 570 const refptr<T> &operator =(const refptr<T> &o)
316 { 571 {
317 *this = o.p; 572 *this = o.p;
318 return *this; 573 return *this;
319 } 574 }
320 575
321 T &operator * () const { return *p; } 576 T &operator * () const { return *p; }
322 T *operator ->() const { return p; } 577 T *operator ->() const { return p; }
323 578
324 operator T *() const { return p; } 579 operator T *() const { return p; }
325}; 580};
326 581
327typedef refptr<maptile> maptile_ptr; 582typedef refptr<maptile> maptile_ptr;
328typedef refptr<object> object_ptr; 583typedef refptr<object> object_ptr;
329typedef refptr<archetype> arch_ptr; 584typedef refptr<archetype> arch_ptr;
330typedef refptr<client> client_ptr; 585typedef refptr<client> client_ptr;
331typedef refptr<player> player_ptr; 586typedef refptr<player> player_ptr;
587typedef refptr<region> region_ptr;
588
589#define STRHSH_NULL 2166136261
590
591static inline uint32_t
592strhsh (const char *s)
593{
594 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
595 // it is about twice as fast as the one-at-a-time one,
596 // with good distribution.
597 // FNV-1a is faster on many cpus because the multiplication
598 // runs concurrently with the looping logic.
599 uint32_t hash = STRHSH_NULL;
600
601 while (*s)
602 hash = (hash ^ *s++) * 16777619U;
603
604 return hash;
605}
606
607static inline uint32_t
608memhsh (const char *s, size_t len)
609{
610 uint32_t hash = STRHSH_NULL;
611
612 while (len--)
613 hash = (hash ^ *s++) * 16777619U;
614
615 return hash;
616}
332 617
333struct str_hash 618struct str_hash
334{ 619{
335 std::size_t operator ()(const char *s) const 620 std::size_t operator ()(const char *s) const
336 { 621 {
337 unsigned long hash = 0;
338
339 /* use the one-at-a-time hash function, which supposedly is
340 * better than the djb2-like one used by perl5.005, but
341 * certainly is better then the bug used here before.
342 * see http://burtleburtle.net/bob/hash/doobs.html
343 */
344 while (*s)
345 {
346 hash += *s++;
347 hash += hash << 10;
348 hash ^= hash >> 6;
349 }
350
351 hash += hash << 3;
352 hash ^= hash >> 11;
353 hash += hash << 15;
354
355 return hash; 622 return strhsh (s);
623 }
624
625 std::size_t operator ()(const shstr &s) const
626 {
627 return strhsh (s);
356 } 628 }
357}; 629};
358 630
359struct str_equal 631struct str_equal
360{ 632{
362 { 634 {
363 return !strcmp (a, b); 635 return !strcmp (a, b);
364 } 636 }
365}; 637};
366 638
639// Mostly the same as std::vector, but insert/erase can reorder
640// the elements, making append(=insert)/remove O(1) instead of O(n).
641//
642// NOTE: only some forms of erase are available
367template<class T> 643template<class T>
368struct unordered_vector : std::vector<T, slice_allocator<T> > 644struct unordered_vector : std::vector<T, slice_allocator<T> >
369{ 645{
370 typedef typename unordered_vector::iterator iterator; 646 typedef typename unordered_vector::iterator iterator;
371 647
381 { 657 {
382 erase ((unsigned int )(i - this->begin ())); 658 erase ((unsigned int )(i - this->begin ()));
383 } 659 }
384}; 660};
385 661
386template<class T, int T::* index> 662// This container blends advantages of linked lists
663// (efficiency) with vectors (random access) by
664// by using an unordered vector and storing the vector
665// index inside the object.
666//
667// + memory-efficient on most 64 bit archs
668// + O(1) insert/remove
669// + free unique (but varying) id for inserted objects
670// + cache-friendly iteration
671// - only works for pointers to structs
672//
673// NOTE: only some forms of erase/insert are available
674typedef int object_vector_index;
675
676template<class T, object_vector_index T::*indexmember>
387struct object_vector : std::vector<T *, slice_allocator<T *> > 677struct object_vector : std::vector<T *, slice_allocator<T *> >
388{ 678{
679 typedef typename object_vector::iterator iterator;
680
681 bool contains (const T *obj) const
682 {
683 return obj->*indexmember;
684 }
685
686 iterator find (const T *obj)
687 {
688 return obj->*indexmember
689 ? this->begin () + obj->*indexmember - 1
690 : this->end ();
691 }
692
693 void push_back (T *obj)
694 {
695 std::vector<T *, slice_allocator<T *> >::push_back (obj);
696 obj->*indexmember = this->size ();
697 }
698
389 void insert (T *obj) 699 void insert (T *obj)
390 { 700 {
391 assert (!(obj->*index));
392 push_back (obj); 701 push_back (obj);
393 obj->*index = this->size ();
394 } 702 }
395 703
396 void insert (T &obj) 704 void insert (T &obj)
397 { 705 {
398 insert (&obj); 706 insert (&obj);
399 } 707 }
400 708
401 void erase (T *obj) 709 void erase (T *obj)
402 { 710 {
403 assert (obj->*index);
404 unsigned int pos = obj->*index; 711 unsigned int pos = obj->*indexmember;
405 obj->*index = 0; 712 obj->*indexmember = 0;
406 713
407 if (pos < this->size ()) 714 if (pos < this->size ())
408 { 715 {
409 (*this)[pos - 1] = (*this)[this->size () - 1]; 716 (*this)[pos - 1] = (*this)[this->size () - 1];
410 (*this)[pos - 1]->*index = pos; 717 (*this)[pos - 1]->*indexmember = pos;
411 } 718 }
412 719
413 this->pop_back (); 720 this->pop_back ();
414 } 721 }
415 722
416 void erase (T &obj) 723 void erase (T &obj)
417 { 724 {
418 errase (&obj); 725 erase (&obj);
419 } 726 }
420}; 727};
421 728
422// basically does what strncpy should do, but appends "..." to strings exceeding length 729// basically does what strncpy should do, but appends "..." to strings exceeding length
730// returns the number of bytes actually used (including \0)
423void assign (char *dst, const char *src, int maxlen); 731int assign (char *dst, const char *src, int maxsize);
424 732
425// type-safe version of assign 733// type-safe version of assign
426template<int N> 734template<int N>
427inline void assign (char (&dst)[N], const char *src) 735inline int assign (char (&dst)[N], const char *src)
428{ 736{
429 assign ((char *)&dst, src, N); 737 return assign ((char *)&dst, src, N);
430} 738}
431 739
432typedef double tstamp; 740typedef double tstamp;
433 741
434// return current time as timestampe 742// return current time as timestamp
435tstamp now (); 743tstamp now ();
436 744
437int similar_direction (int a, int b); 745int similar_direction (int a, int b);
438 746
747// like v?sprintf, but returns a "static" buffer
748char *vformat (const char *format, va_list ap);
749char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
750
751// safety-check player input which will become object->msg
752bool msg_is_safe (const char *msg);
753
754/////////////////////////////////////////////////////////////////////////////
755// threads, very very thin wrappers around pthreads
756
757struct thread
758{
759 pthread_t id;
760
761 void start (void *(*start_routine)(void *), void *arg = 0);
762
763 void cancel ()
764 {
765 pthread_cancel (id);
766 }
767
768 void *join ()
769 {
770 void *ret;
771
772 if (pthread_join (id, &ret))
773 cleanup ("pthread_join failed", 1);
774
775 return ret;
776 }
777};
778
779// note that mutexes are not classes
780typedef pthread_mutex_t smutex;
781
782#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
783 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
784#else
785 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
439#endif 786#endif
440 787
788#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
789#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
790#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
791
792typedef pthread_cond_t scond;
793
794#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
795#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
796#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
797#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
798
799#endif
800

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines