ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.11 by root, Tue Sep 12 20:55:40 2006 UTC vs.
Revision 1.108 by root, Wed May 26 19:11:43 2010 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4#if __GNUC__ >= 3 26#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 27
28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32#include <pthread.h>
33
34#include <cstddef>
35#include <cmath>
36#include <new>
37#include <vector>
38
39#include <glib.h>
40
41#include <shstr.h>
42#include <traits.h>
43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr)
59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
6#else 67#else
7# define is_constant(c) 0 68#define array_length(name) (sizeof (name) / sizeof (name [0]))
8#endif 69#endif
9 70
10#include <cstddef> 71// very ugly macro that basically declares and initialises a variable
72// that is in scope for the next statement only
73// works only for stuff that can be assigned 0 and converts to false
74// (note: works great for pointers)
75// most ugly macro I ever wrote
76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
11 77
12#include <glib.h> 78// in range including end
79#define IN_RANGE_INC(val,beg,end) \
80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
81
82// in range excluding end
83#define IN_RANGE_EXC(val,beg,end) \
84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85
86void cleanup (const char *cause, bool make_core = false);
87void fork_abort (const char *msg);
88
89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
90// as a is often a constant while b is the variable. it is still a bug, though.
91template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
92template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119template<typename T, typename U>
120static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
121
122// div* only work correctly for div > 0
123// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124template<typename T> static inline T div (T val, T div)
125{
126 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
127}
128
129template<> inline float div (float val, float div) { return val / div; }
130template<> inline double div (double val, double div) { return val / div; }
131
132// div, round-up
133template<typename T> static inline T div_ru (T val, T div)
134{
135 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
136}
137// div, round-down
138template<typename T> static inline T div_rd (T val, T div)
139{
140 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
141}
142
143// lerp* only work correctly for min_in < max_in
144// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
145template<typename T>
146static inline T
147lerp (T val, T min_in, T max_in, T min_out, T max_out)
148{
149 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
150}
151
152// lerp, round-down
153template<typename T>
154static inline T
155lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
156{
157 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
158}
159
160// lerp, round-up
161template<typename T>
162static inline T
163lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
164{
165 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
166}
167
168// lots of stuff taken from FXT
169
170/* Rotate right. This is used in various places for checksumming */
171//TODO: that sucks, use a better checksum algo
172static inline uint32_t
173rotate_right (uint32_t c, uint32_t count = 1)
174{
175 return (c << (32 - count)) | (c >> count);
176}
177
178static inline uint32_t
179rotate_left (uint32_t c, uint32_t count = 1)
180{
181 return (c >> (32 - count)) | (c << count);
182}
183
184// Return abs(a-b)
185// Both a and b must not have the most significant bit set
186static inline uint32_t
187upos_abs_diff (uint32_t a, uint32_t b)
188{
189 long d1 = b - a;
190 long d2 = (d1 & (d1 >> 31)) << 1;
191
192 return d1 - d2; // == (b - d) - (a + d);
193}
194
195// Both a and b must not have the most significant bit set
196static inline uint32_t
197upos_min (uint32_t a, uint32_t b)
198{
199 int32_t d = b - a;
200 d &= d >> 31;
201 return a + d;
202}
203
204// Both a and b must not have the most significant bit set
205static inline uint32_t
206upos_max (uint32_t a, uint32_t b)
207{
208 int32_t d = b - a;
209 d &= d >> 31;
210 return b - d;
211}
212
213// this is much faster than crossfire's original algorithm
214// on modern cpus
215inline int
216isqrt (int n)
217{
218 return (int)sqrtf ((float)n);
219}
220
221// this is kind of like the ^^ operator, if it would exist, without sequence point.
222// more handy than it looks like, due to the implicit !! done on its arguments
223inline bool
224logical_xor (bool a, bool b)
225{
226 return a != b;
227}
228
229inline bool
230logical_implies (bool a, bool b)
231{
232 return a <= b;
233}
234
235// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
236#if 0
237// and has a max. error of 6 in the range -100..+100.
238#else
239// and has a max. error of 9 in the range -100..+100.
240#endif
241inline int
242idistance (int dx, int dy)
243{
244 unsigned int dx_ = abs (dx);
245 unsigned int dy_ = abs (dy);
246
247#if 0
248 return dx_ > dy_
249 ? (dx_ * 61685 + dy_ * 26870) >> 16
250 : (dy_ * 61685 + dx_ * 26870) >> 16;
251#else
252 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
253#endif
254}
255
256/*
257 * absdir(int): Returns a number between 1 and 8, which represent
258 * the "absolute" direction of a number (it actually takes care of
259 * "overflow" in previous calculations of a direction).
260 */
261inline int
262absdir (int d)
263{
264 return ((d - 1) & 7) + 1;
265}
266
267// avoid ctz name because netbsd or freebsd spams it's namespace with it
268#if GCC_VERSION(3,4)
269static inline int least_significant_bit (uint32_t x)
270{
271 return __builtin_ctz (x);
272}
273#else
274int least_significant_bit (uint32_t x);
275#endif
276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
281extern ssize_t slice_alloc; // statistics
282
283void *salloc_ (int n) throw (std::bad_alloc);
284void *salloc_ (int n, void *src) throw (std::bad_alloc);
285
286// strictly the same as g_slice_alloc, but never returns 0
287template<typename T>
288inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
289
290// also copies src into the new area, like "memdup"
291// if src is 0, clears the memory
292template<typename T>
293inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294
295// clears the memory
296template<typename T>
297inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
298
299// for symmetry
300template<typename T>
301inline void sfree (T *ptr, int n = 1) throw ()
302{
303 if (expect_true (ptr))
304 {
305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 assert (slice_alloc >= 0);//D
309 }
310}
311
312// nulls the pointer
313template<typename T>
314inline void sfree0 (T *&ptr, int n = 1) throw ()
315{
316 sfree<T> (ptr, n);
317 ptr = 0;
318}
13 319
14// makes dynamically allocated objects zero-initialised 320// makes dynamically allocated objects zero-initialised
15struct zero_initialised 321struct zero_initialised
16{ 322{
17 void *operator new (size_t s, void *p) 323 void *operator new (size_t s, void *p)
20 return p; 326 return p;
21 } 327 }
22 328
23 void *operator new (size_t s) 329 void *operator new (size_t s)
24 { 330 {
25 return g_slice_alloc0 (s); 331 return salloc0<char> (s);
26 } 332 }
27 333
28 void *operator new[] (size_t s) 334 void *operator new[] (size_t s)
29 { 335 {
30 return g_slice_alloc0 (s); 336 return salloc0<char> (s);
31 } 337 }
32 338
33 void operator delete (void *p, size_t s) 339 void operator delete (void *p, size_t s)
34 { 340 {
35 g_slice_free1 (s, p); 341 sfree ((char *)p, s);
36 } 342 }
37 343
38 void operator delete[] (void *p, size_t s) 344 void operator delete[] (void *p, size_t s)
39 { 345 {
40 g_slice_free1 (s, p); 346 sfree ((char *)p, s);
41 } 347 }
42}; 348};
43 349
44void throw_bad_alloc () throw (std::bad_alloc); 350// makes dynamically allocated objects zero-initialised
351struct slice_allocated
352{
353 void *operator new (size_t s, void *p)
354 {
355 return p;
356 }
45 357
46void *alloc (int s) throw (std::bad_alloc); 358 void *operator new (size_t s)
47void dealloc (void *p, int s) throw (); 359 {
360 return salloc<char> (s);
361 }
362
363 void *operator new[] (size_t s)
364 {
365 return salloc<char> (s);
366 }
367
368 void operator delete (void *p, size_t s)
369 {
370 sfree ((char *)p, s);
371 }
372
373 void operator delete[] (void *p, size_t s)
374 {
375 sfree ((char *)p, s);
376 }
377};
48 378
49// a STL-compatible allocator that uses g_slice 379// a STL-compatible allocator that uses g_slice
50// boy, this is verbose 380// boy, this is verbose
51template<typename Tp> 381template<typename Tp>
52struct slice_allocator 382struct slice_allocator
64 { 394 {
65 typedef slice_allocator<U> other; 395 typedef slice_allocator<U> other;
66 }; 396 };
67 397
68 slice_allocator () throw () { } 398 slice_allocator () throw () { }
69 slice_allocator (const slice_allocator &o) throw () { } 399 slice_allocator (const slice_allocator &) throw () { }
70 template<typename Tp2> 400 template<typename Tp2>
71 slice_allocator (const slice_allocator<Tp2> &) throw () { } 401 slice_allocator (const slice_allocator<Tp2> &) throw () { }
72 402
73 ~slice_allocator () { } 403 ~slice_allocator () { }
74 404
75 pointer address (reference x) const { return &x; } 405 pointer address (reference x) const { return &x; }
76 const_pointer address (const_reference x) const { return &x; } 406 const_pointer address (const_reference x) const { return &x; }
77 407
78 pointer allocate (size_type n, const_pointer = 0) 408 pointer allocate (size_type n, const_pointer = 0)
79 { 409 {
80 return static_cast<pointer>(alloc (n * sizeof (Tp))); 410 return salloc<Tp> (n);
81 } 411 }
82 412
83 void deallocate (pointer p, size_type n) 413 void deallocate (pointer p, size_type n)
84 { 414 {
85 dealloc (static_cast<void *>(p), n); 415 sfree<Tp> (p, n);
86 } 416 }
87 417
88 size_type max_size ()const throw () 418 size_type max_size () const throw ()
89 { 419 {
90 return size_t (-1) / sizeof (Tp); 420 return size_t (-1) / sizeof (Tp);
91 } 421 }
92 422
93 void construct (pointer p, const Tp &val) 423 void construct (pointer p, const Tp &val)
99 { 429 {
100 p->~Tp (); 430 p->~Tp ();
101 } 431 }
102}; 432};
103 433
434// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
435// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
436// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
437struct tausworthe_random_generator
438{
439 uint32_t state [4];
440
441 void operator =(const tausworthe_random_generator &src)
442 {
443 state [0] = src.state [0];
444 state [1] = src.state [1];
445 state [2] = src.state [2];
446 state [3] = src.state [3];
447 }
448
449 void seed (uint32_t seed);
450 uint32_t next ();
451};
452
453// Xorshift RNGs, George Marsaglia
454// http://www.jstatsoft.org/v08/i14/paper
455// this one is about 40% faster than the tausworthe one above (i.e. not much),
456// despite the inlining, and has the issue of only creating 2**32-1 numbers.
457// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
458struct xorshift_random_generator
459{
460 uint32_t x, y;
461
462 void operator =(const xorshift_random_generator &src)
463 {
464 x = src.x;
465 y = src.y;
466 }
467
468 void seed (uint32_t seed)
469 {
470 x = seed;
471 y = seed * 69069U;
472 }
473
474 uint32_t next ()
475 {
476 uint32_t t = x ^ (x << 10);
477 x = y;
478 y = y ^ (y >> 13) ^ t ^ (t >> 10);
479 return y;
480 }
481};
482
483template<class generator>
484struct random_number_generator : generator
485{
486 // uniform distribution, [0 .. num - 1]
487 uint32_t operator ()(uint32_t num)
488 {
489 return !is_constant (num) ? get_range (num) // non-constant
490 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
491 : this->next () & (num - 1); // constant, power-of-two
492 }
493
494 // return a number within the closed interval [min .. max]
495 int operator () (int r_min, int r_max)
496 {
497 return is_constant (r_min <= r_max) && r_min <= r_max
498 ? r_min + operator ()(r_max - r_min + 1)
499 : get_range (r_min, r_max);
500 }
501
502 // return a number within the half-open interval [0..1[
503 double operator ()()
504 {
505 return this->next () / (double)0x100000000ULL;
506 }
507
508protected:
509 uint32_t get_range (uint32_t r_max);
510 int get_range (int r_min, int r_max);
511};
512
513typedef random_number_generator<tausworthe_random_generator> rand_gen;
514
515extern rand_gen rndm, rmg_rndm;
516
517INTERFACE_CLASS (attachable)
104struct refcounted 518struct refcnt_base
105{ 519{
106 mutable int refcnt; 520 typedef int refcnt_t;
107 refcounted () : refcnt (0) { } 521 mutable refcnt_t ACC (RW, refcnt);
522
108 void refcnt_inc () { ++refcnt; } 523 MTH void refcnt_inc () const { ++refcnt; }
109 void refcnt_dec () { --refcnt; 524 MTH void refcnt_dec () const { --refcnt; }
110 if (refcnt < 0)abort();}//D 525
526 refcnt_base () : refcnt (0) { }
111}; 527};
528
529// to avoid branches with more advanced compilers
530extern refcnt_base::refcnt_t refcnt_dummy;
112 531
113template<class T> 532template<class T>
114struct refptr 533struct refptr
115{ 534{
535 // p if not null
536 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
537
538 void refcnt_dec ()
539 {
540 if (!is_constant (p))
541 --*refcnt_ref ();
542 else if (p)
543 --p->refcnt;
544 }
545
546 void refcnt_inc ()
547 {
548 if (!is_constant (p))
549 ++*refcnt_ref ();
550 else if (p)
551 ++p->refcnt;
552 }
553
116 T *p; 554 T *p;
117 555
118 refptr () : p(0) { } 556 refptr () : p(0) { }
119 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 557 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
120 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 558 refptr (T *p) : p(p) { refcnt_inc (); }
121 ~refptr () { if (p) p->refcnt_dec (); } 559 ~refptr () { refcnt_dec (); }
122 560
123 const refptr<T> &operator =(T *o) 561 const refptr<T> &operator =(T *o)
124 { 562 {
563 // if decrementing ever destroys we need to reverse the order here
125 if (p) p->refcnt_dec (); 564 refcnt_dec ();
126 p = o; 565 p = o;
127 if (p) p->refcnt_inc (); 566 refcnt_inc ();
128
129 return *this; 567 return *this;
130 } 568 }
131 569
132 const refptr<T> &operator =(const refptr<T> o) 570 const refptr<T> &operator =(const refptr<T> &o)
133 { 571 {
134 *this = o.p; 572 *this = o.p;
135 return *this; 573 return *this;
136 } 574 }
137 575
138 T &operator * () const { return *p; } 576 T &operator * () const { return *p; }
139 T *operator ->() const { return p; } 577 T *operator ->() const { return p; }
140 578
141 operator T *() const { return p; } 579 operator T *() const { return p; }
142}; 580};
143 581
582typedef refptr<maptile> maptile_ptr;
583typedef refptr<object> object_ptr;
584typedef refptr<archetype> arch_ptr;
585typedef refptr<client> client_ptr;
586typedef refptr<player> player_ptr;
587typedef refptr<region> region_ptr;
588
589#define STRHSH_NULL 2166136261
590
591static inline uint32_t
592strhsh (const char *s)
593{
594 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
595 // it is about twice as fast as the one-at-a-time one,
596 // with good distribution.
597 // FNV-1a is faster on many cpus because the multiplication
598 // runs concurrently with the looping logic.
599 uint32_t hash = STRHSH_NULL;
600
601 while (*s)
602 hash = (hash ^ *s++) * 16777619U;
603
604 return hash;
605}
606
607static inline uint32_t
608memhsh (const char *s, size_t len)
609{
610 uint32_t hash = STRHSH_NULL;
611
612 while (len--)
613 hash = (hash ^ *s++) * 16777619U;
614
615 return hash;
616}
617
144struct str_hash 618struct str_hash
145{ 619{
146 std::size_t operator ()(const char *s) const 620 std::size_t operator ()(const char *s) const
147 { 621 {
148 unsigned long hash = 0;
149
150 /* use the one-at-a-time hash function, which supposedly is
151 * better than the djb2-like one used by perl5.005, but
152 * certainly is better then the bug used here before.
153 * see http://burtleburtle.net/bob/hash/doobs.html
154 */
155 while (*s)
156 {
157 hash += *s++;
158 hash += hash << 10;
159 hash ^= hash >> 6;
160 }
161
162 hash += hash << 3;
163 hash ^= hash >> 11;
164 hash += hash << 15;
165
166 return hash; 622 return strhsh (s);
623 }
624
625 std::size_t operator ()(const shstr &s) const
626 {
627 return strhsh (s);
167 } 628 }
168}; 629};
169 630
170struct str_equal 631struct str_equal
171{ 632{
173 { 634 {
174 return !strcmp (a, b); 635 return !strcmp (a, b);
175 } 636 }
176}; 637};
177 638
178#include <vector> 639// Mostly the same as std::vector, but insert/erase can reorder
179 640// the elements, making append(=insert)/remove O(1) instead of O(n).
641//
642// NOTE: only some forms of erase are available
180template<class obj> 643template<class T>
181struct unordered_vector : std::vector<obj, slice_allocator<obj> > 644struct unordered_vector : std::vector<T, slice_allocator<T> >
182{ 645{
183 typedef typename unordered_vector::iterator iterator; 646 typedef typename unordered_vector::iterator iterator;
184 647
185 void erase (unsigned int pos) 648 void erase (unsigned int pos)
186 { 649 {
194 { 657 {
195 erase ((unsigned int )(i - this->begin ())); 658 erase ((unsigned int )(i - this->begin ()));
196 } 659 }
197}; 660};
198 661
199template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 662// This container blends advantages of linked lists
200template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 663// (efficiency) with vectors (random access) by
201template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 664// by using an unordered vector and storing the vector
665// index inside the object.
666//
667// + memory-efficient on most 64 bit archs
668// + O(1) insert/remove
669// + free unique (but varying) id for inserted objects
670// + cache-friendly iteration
671// - only works for pointers to structs
672//
673// NOTE: only some forms of erase/insert are available
674typedef int object_vector_index;
202 675
203template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 676template<class T, object_vector_index T::*indexmember>
677struct object_vector : std::vector<T *, slice_allocator<T *> >
678{
679 typedef typename object_vector::iterator iterator;
680
681 bool contains (const T *obj) const
682 {
683 return obj->*indexmember;
684 }
685
686 iterator find (const T *obj)
687 {
688 return obj->*indexmember
689 ? this->begin () + obj->*indexmember - 1
690 : this->end ();
691 }
692
693 void push_back (T *obj)
694 {
695 std::vector<T *, slice_allocator<T *> >::push_back (obj);
696 obj->*indexmember = this->size ();
697 }
698
699 void insert (T *obj)
700 {
701 push_back (obj);
702 }
703
704 void insert (T &obj)
705 {
706 insert (&obj);
707 }
708
709 void erase (T *obj)
710 {
711 unsigned int pos = obj->*indexmember;
712 obj->*indexmember = 0;
713
714 if (pos < this->size ())
715 {
716 (*this)[pos - 1] = (*this)[this->size () - 1];
717 (*this)[pos - 1]->*indexmember = pos;
718 }
719
720 this->pop_back ();
721 }
722
723 void erase (T &obj)
724 {
725 erase (&obj);
726 }
727};
204 728
205// basically does what strncpy should do, but appends "..." to strings exceeding length 729// basically does what strncpy should do, but appends "..." to strings exceeding length
730// returns the number of bytes actually used (including \0)
206void assign (char *dst, const char *src, int maxlen); 731int assign (char *dst, const char *src, int maxsize);
207 732
208// type-safe version of assign 733// type-safe version of assign
209template<int N> 734template<int N>
210inline void assign (char (&dst)[N], const char *src) 735inline int assign (char (&dst)[N], const char *src)
211{ 736{
212 assign ((char *)&dst, src, N); 737 return assign ((char *)&dst, src, N);
213} 738}
214 739
740typedef double tstamp;
741
742// return current time as timestamp
743tstamp now ();
744
745int similar_direction (int a, int b);
746
747// like v?sprintf, but returns a "static" buffer
748char *vformat (const char *format, va_list ap);
749char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
750
751// safety-check player input which will become object->msg
752bool msg_is_safe (const char *msg);
753
754/////////////////////////////////////////////////////////////////////////////
755// threads, very very thin wrappers around pthreads
756
757struct thread
758{
759 pthread_t id;
760
761 void start (void *(*start_routine)(void *), void *arg = 0);
762
763 void cancel ()
764 {
765 pthread_cancel (id);
766 }
767
768 void *join ()
769 {
770 void *ret;
771
772 if (pthread_join (id, &ret))
773 cleanup ("pthread_join failed", 1);
774
775 return ret;
776 }
777};
778
779// note that mutexes are not classes
780typedef pthread_mutex_t smutex;
781
782#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
783 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
784#else
785 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
215#endif 786#endif
216 787
788#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
789#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
790#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
791
792typedef pthread_cond_t scond;
793
794#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
795#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
796#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
797#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
798
799#endif
800

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines