ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.45 by root, Sat May 26 15:44:05 2007 UTC vs.
Revision 1.114 by root, Sat Apr 23 04:56:51 2011 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#include <compiler.h>
5 27
6#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8# define expect(expr,value) __builtin_expect ((expr),(value)) 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
10#else
11# define is_constant(c) 0
12# define expect(expr,value) (expr)
13# define prefetch(addr,rw,locality)
14#endif
15 31
16// put into ifs if you are very sure that the expression 32#include <pthread.h>
17// is mostly true or mosty false. note that these return
18// booleans, not the expression.
19#define expect_false(expr) expect ((expr) != 0, 0)
20#define expect_true(expr) expect ((expr) != 0, 1)
21 33
22#include <cstddef> 34#include <cstddef>
23#include <cmath> 35#include <cmath>
24#include <new> 36#include <new>
25#include <vector> 37#include <vector>
27#include <glib.h> 39#include <glib.h>
28 40
29#include <shstr.h> 41#include <shstr.h>
30#include <traits.h> 42#include <traits.h>
31 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
32// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
33#define auto(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
34 59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
35// very ugly macro that basicaly declares and initialises a variable 71// very ugly macro that basically declares and initialises a variable
36// that is in scope for the next statement only 72// that is in scope for the next statement only
37// works only for stuff that can be assigned 0 and converts to false 73// works only for stuff that can be assigned 0 and converts to false
38// (note: works great for pointers) 74// (note: works great for pointers)
39// most ugly macro I ever wrote 75// most ugly macro I ever wrote
40#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
41 77
42// in range including end 78// in range including end
43#define IN_RANGE_INC(val,beg,end) \ 79#define IN_RANGE_INC(val,beg,end) \
44 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
45 81
46// in range excluding end 82// in range excluding end
47#define IN_RANGE_EXC(val,beg,end) \ 83#define IN_RANGE_EXC(val,beg,end) \
48 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
49 85
86void cleanup (const char *cause, bool make_core = false);
50void fork_abort (const char *msg); 87void fork_abort (const char *msg);
51 88
52// rationale for using (U) not (T) is to reduce signed/unsigned issues, 89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
53// as a is often a constant while b is the variable. it is still a bug, though. 90// as a is often a constant while b is the variable. it is still a bug, though.
54template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 91template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
55template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 92template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
56template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
57 94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
58template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
59 100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119//clashes with C++0x
120template<typename T, typename U>
121static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129
130template<> inline float div (float val, float div) { return val / div; }
131template<> inline double div (double val, double div) { return val / div; }
132
133// div, round-up
134template<typename T> static inline T div_ru (T val, T div)
135{
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137}
138// div, round-down
139template<typename T> static inline T div_rd (T val, T div)
140{
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142}
143
144// lerp* only work correctly for min_in < max_in
145// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
60template<typename T> 146template<typename T>
61static inline T 147static inline T
62lerp (T val, T min_in, T max_in, T min_out, T max_out) 148lerp (T val, T min_in, T max_in, T min_out, T max_out)
63{ 149{
64 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151}
152
153// lerp, round-down
154template<typename T>
155static inline T
156lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157{
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159}
160
161// lerp, round-up
162template<typename T>
163static inline T
164lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165{
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
65} 167}
66 168
67// lots of stuff taken from FXT 169// lots of stuff taken from FXT
68 170
69/* Rotate right. This is used in various places for checksumming */ 171/* Rotate right. This is used in various places for checksumming */
107 int32_t d = b - a; 209 int32_t d = b - a;
108 d &= d >> 31; 210 d &= d >> 31;
109 return b - d; 211 return b - d;
110} 212}
111 213
112// this is much faster than crossfires original algorithm 214// this is much faster than crossfire's original algorithm
113// on modern cpus 215// on modern cpus
114inline int 216inline int
115isqrt (int n) 217isqrt (int n)
116{ 218{
117 return (int)sqrtf ((float)n); 219 return (int)sqrtf ((float)n);
220}
221
222// this is kind of like the ^^ operator, if it would exist, without sequence point.
223// more handy than it looks like, due to the implicit !! done on its arguments
224inline bool
225logical_xor (bool a, bool b)
226{
227 return a != b;
228}
229
230inline bool
231logical_implies (bool a, bool b)
232{
233 return a <= b;
118} 234}
119 235
120// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 236// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
121#if 0 237#if 0
122// and has a max. error of 6 in the range -100..+100. 238// and has a max. error of 6 in the range -100..+100.
147absdir (int d) 263absdir (int d)
148{ 264{
149 return ((d - 1) & 7) + 1; 265 return ((d - 1) & 7) + 1;
150} 266}
151 267
268// avoid ctz name because netbsd or freebsd spams it's namespace with it
269#if GCC_VERSION(3,4)
270static inline int least_significant_bit (uint32_t x)
271{
272 return __builtin_ctz (x);
273}
274#else
275int least_significant_bit (uint32_t x);
276#endif
277
278#define for_all_bits_sparse_32(mask, idxvar) \
279 for (uint32_t idxvar, mask_ = mask; \
280 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
281
282extern ssize_t slice_alloc; // statistics
283
284void *salloc_ (int n) throw (std::bad_alloc);
285void *salloc_ (int n, void *src) throw (std::bad_alloc);
286
287// strictly the same as g_slice_alloc, but never returns 0
288template<typename T>
289inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
290
291// also copies src into the new area, like "memdup"
292// if src is 0, clears the memory
293template<typename T>
294inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
295
296// clears the memory
297template<typename T>
298inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
299
300// for symmetry
301template<typename T>
302inline void sfree (T *ptr, int n = 1) throw ()
303{
304 if (expect_true (ptr))
305 {
306 slice_alloc -= n * sizeof (T);
307 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
308 g_slice_free1 (n * sizeof (T), (void *)ptr);
309 assert (slice_alloc >= 0);//D
310 }
311}
312
313// nulls the pointer
314template<typename T>
315inline void sfree0 (T *&ptr, int n = 1) throw ()
316{
317 sfree<T> (ptr, n);
318 ptr = 0;
319}
320
152// makes dynamically allocated objects zero-initialised 321// makes dynamically allocated objects zero-initialised
153struct zero_initialised 322struct zero_initialised
154{ 323{
155 void *operator new (size_t s, void *p) 324 void *operator new (size_t s, void *p)
156 { 325 {
158 return p; 327 return p;
159 } 328 }
160 329
161 void *operator new (size_t s) 330 void *operator new (size_t s)
162 { 331 {
163 return g_slice_alloc0 (s); 332 return salloc0<char> (s);
164 } 333 }
165 334
166 void *operator new[] (size_t s) 335 void *operator new[] (size_t s)
167 { 336 {
168 return g_slice_alloc0 (s); 337 return salloc0<char> (s);
169 } 338 }
170 339
171 void operator delete (void *p, size_t s) 340 void operator delete (void *p, size_t s)
172 { 341 {
173 g_slice_free1 (s, p); 342 sfree ((char *)p, s);
174 } 343 }
175 344
176 void operator delete[] (void *p, size_t s) 345 void operator delete[] (void *p, size_t s)
177 { 346 {
178 g_slice_free1 (s, p); 347 sfree ((char *)p, s);
179 } 348 }
180}; 349};
181 350
182void *salloc_ (int n) throw (std::bad_alloc); 351// makes dynamically allocated objects zero-initialised
183void *salloc_ (int n, void *src) throw (std::bad_alloc); 352struct slice_allocated
184
185// strictly the same as g_slice_alloc, but never returns 0
186template<typename T>
187inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
188
189// also copies src into the new area, like "memdup"
190// if src is 0, clears the memory
191template<typename T>
192inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
193
194// clears the memory
195template<typename T>
196inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
197
198// for symmetry
199template<typename T>
200inline void sfree (T *ptr, int n = 1) throw ()
201{ 353{
202#ifdef PREFER_MALLOC 354 void *operator new (size_t s, void *p)
203 free (ptr); 355 {
204#else 356 return p;
205 g_slice_free1 (n * sizeof (T), (void *)ptr); 357 }
206#endif 358
207} 359 void *operator new (size_t s)
360 {
361 return salloc<char> (s);
362 }
363
364 void *operator new[] (size_t s)
365 {
366 return salloc<char> (s);
367 }
368
369 void operator delete (void *p, size_t s)
370 {
371 sfree ((char *)p, s);
372 }
373
374 void operator delete[] (void *p, size_t s)
375 {
376 sfree ((char *)p, s);
377 }
378};
208 379
209// a STL-compatible allocator that uses g_slice 380// a STL-compatible allocator that uses g_slice
210// boy, this is verbose 381// boy, this is verbose
211template<typename Tp> 382template<typename Tp>
212struct slice_allocator 383struct slice_allocator
224 { 395 {
225 typedef slice_allocator<U> other; 396 typedef slice_allocator<U> other;
226 }; 397 };
227 398
228 slice_allocator () throw () { } 399 slice_allocator () throw () { }
229 slice_allocator (const slice_allocator &o) throw () { } 400 slice_allocator (const slice_allocator &) throw () { }
230 template<typename Tp2> 401 template<typename Tp2>
231 slice_allocator (const slice_allocator<Tp2> &) throw () { } 402 slice_allocator (const slice_allocator<Tp2> &) throw () { }
232 403
233 ~slice_allocator () { } 404 ~slice_allocator () { }
234 405
243 void deallocate (pointer p, size_type n) 414 void deallocate (pointer p, size_type n)
244 { 415 {
245 sfree<Tp> (p, n); 416 sfree<Tp> (p, n);
246 } 417 }
247 418
248 size_type max_size ()const throw () 419 size_type max_size () const throw ()
249 { 420 {
250 return size_t (-1) / sizeof (Tp); 421 return size_t (-1) / sizeof (Tp);
251 } 422 }
252 423
253 void construct (pointer p, const Tp &val) 424 void construct (pointer p, const Tp &val)
259 { 430 {
260 p->~Tp (); 431 p->~Tp ();
261 } 432 }
262}; 433};
263 434
264// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 435INTERFACE_CLASS (attachable)
265// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 436struct refcnt_base
266// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
267struct tausworthe_random_generator
268{ 437{
269 // generator 438 typedef int refcnt_t;
270 uint32_t state [4]; 439 mutable refcnt_t ACC (RW, refcnt);
271 440
272 void operator =(const tausworthe_random_generator &src) 441 MTH void refcnt_inc () const { ++refcnt; }
273 { 442 MTH void refcnt_dec () const { --refcnt; }
274 state [0] = src.state [0];
275 state [1] = src.state [1];
276 state [2] = src.state [2];
277 state [3] = src.state [3];
278 }
279 443
280 void seed (uint32_t seed); 444 refcnt_base () : refcnt (0) { }
281 uint32_t next ();
282
283 // uniform distribution
284 uint32_t operator ()(uint32_t num)
285 {
286 return is_constant (num)
287 ? (next () * (uint64_t)num) >> 32U
288 : get_range (num);
289 }
290
291 // return a number within (min .. max)
292 int operator () (int r_min, int r_max)
293 {
294 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
295 ? r_min + operator ()(r_max - r_min + 1)
296 : get_range (r_min, r_max);
297 }
298
299 double operator ()()
300 {
301 return this->next () / (double)0xFFFFFFFFU;
302 }
303
304protected:
305 uint32_t get_range (uint32_t r_max);
306 int get_range (int r_min, int r_max);
307}; 445};
308 446
309typedef tausworthe_random_generator rand_gen; 447// to avoid branches with more advanced compilers
310 448extern refcnt_base::refcnt_t refcnt_dummy;
311extern rand_gen rndm;
312 449
313template<class T> 450template<class T>
314struct refptr 451struct refptr
315{ 452{
453 // p if not null
454 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
455
456 void refcnt_dec ()
457 {
458 if (!is_constant (p))
459 --*refcnt_ref ();
460 else if (p)
461 --p->refcnt;
462 }
463
464 void refcnt_inc ()
465 {
466 if (!is_constant (p))
467 ++*refcnt_ref ();
468 else if (p)
469 ++p->refcnt;
470 }
471
316 T *p; 472 T *p;
317 473
318 refptr () : p(0) { } 474 refptr () : p(0) { }
319 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 475 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
320 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 476 refptr (T *p) : p(p) { refcnt_inc (); }
321 ~refptr () { if (p) p->refcnt_dec (); } 477 ~refptr () { refcnt_dec (); }
322 478
323 const refptr<T> &operator =(T *o) 479 const refptr<T> &operator =(T *o)
324 { 480 {
481 // if decrementing ever destroys we need to reverse the order here
325 if (p) p->refcnt_dec (); 482 refcnt_dec ();
326 p = o; 483 p = o;
327 if (p) p->refcnt_inc (); 484 refcnt_inc ();
328
329 return *this; 485 return *this;
330 } 486 }
331 487
332 const refptr<T> &operator =(const refptr<T> o) 488 const refptr<T> &operator =(const refptr<T> &o)
333 { 489 {
334 *this = o.p; 490 *this = o.p;
335 return *this; 491 return *this;
336 } 492 }
337 493
338 T &operator * () const { return *p; } 494 T &operator * () const { return *p; }
339 T *operator ->() const { return p; } 495 T *operator ->() const { return p; }
340 496
341 operator T *() const { return p; } 497 operator T *() const { return p; }
342}; 498};
343 499
344typedef refptr<maptile> maptile_ptr; 500typedef refptr<maptile> maptile_ptr;
345typedef refptr<object> object_ptr; 501typedef refptr<object> object_ptr;
346typedef refptr<archetype> arch_ptr; 502typedef refptr<archetype> arch_ptr;
347typedef refptr<client> client_ptr; 503typedef refptr<client> client_ptr;
348typedef refptr<player> player_ptr; 504typedef refptr<player> player_ptr;
505typedef refptr<region> region_ptr;
506
507#define STRHSH_NULL 2166136261
508
509static inline uint32_t
510strhsh (const char *s)
511{
512 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
513 // it is about twice as fast as the one-at-a-time one,
514 // with good distribution.
515 // FNV-1a is faster on many cpus because the multiplication
516 // runs concurrently with the looping logic.
517 // we modify the hash a bit to improve its distribution
518 uint32_t hash = STRHSH_NULL;
519
520 while (*s)
521 hash = (hash ^ *s++) * 16777619U;
522
523 return hash ^ (hash >> 16);
524}
525
526static inline uint32_t
527memhsh (const char *s, size_t len)
528{
529 uint32_t hash = STRHSH_NULL;
530
531 while (len--)
532 hash = (hash ^ *s++) * 16777619U;
533
534 return hash;
535}
349 536
350struct str_hash 537struct str_hash
351{ 538{
352 std::size_t operator ()(const char *s) const 539 std::size_t operator ()(const char *s) const
353 { 540 {
354 unsigned long hash = 0;
355
356 /* use the one-at-a-time hash function, which supposedly is
357 * better than the djb2-like one used by perl5.005, but
358 * certainly is better then the bug used here before.
359 * see http://burtleburtle.net/bob/hash/doobs.html
360 */
361 while (*s)
362 {
363 hash += *s++;
364 hash += hash << 10;
365 hash ^= hash >> 6;
366 }
367
368 hash += hash << 3;
369 hash ^= hash >> 11;
370 hash += hash << 15;
371
372 return hash; 541 return strhsh (s);
542 }
543
544 std::size_t operator ()(const shstr &s) const
545 {
546 return strhsh (s);
373 } 547 }
374}; 548};
375 549
376struct str_equal 550struct str_equal
377{ 551{
379 { 553 {
380 return !strcmp (a, b); 554 return !strcmp (a, b);
381 } 555 }
382}; 556};
383 557
558// Mostly the same as std::vector, but insert/erase can reorder
559// the elements, making append(=insert)/remove O(1) instead of O(n).
560//
561// NOTE: only some forms of erase are available
384template<class T> 562template<class T>
385struct unordered_vector : std::vector<T, slice_allocator<T> > 563struct unordered_vector : std::vector<T, slice_allocator<T> >
386{ 564{
387 typedef typename unordered_vector::iterator iterator; 565 typedef typename unordered_vector::iterator iterator;
388 566
398 { 576 {
399 erase ((unsigned int )(i - this->begin ())); 577 erase ((unsigned int )(i - this->begin ()));
400 } 578 }
401}; 579};
402 580
403template<class T, int T::* index> 581// This container blends advantages of linked lists
582// (efficiency) with vectors (random access) by
583// by using an unordered vector and storing the vector
584// index inside the object.
585//
586// + memory-efficient on most 64 bit archs
587// + O(1) insert/remove
588// + free unique (but varying) id for inserted objects
589// + cache-friendly iteration
590// - only works for pointers to structs
591//
592// NOTE: only some forms of erase/insert are available
593typedef int object_vector_index;
594
595template<class T, object_vector_index T::*indexmember>
404struct object_vector : std::vector<T *, slice_allocator<T *> > 596struct object_vector : std::vector<T *, slice_allocator<T *> >
405{ 597{
598 typedef typename object_vector::iterator iterator;
599
600 bool contains (const T *obj) const
601 {
602 return obj->*indexmember;
603 }
604
605 iterator find (const T *obj)
606 {
607 return obj->*indexmember
608 ? this->begin () + obj->*indexmember - 1
609 : this->end ();
610 }
611
612 void push_back (T *obj)
613 {
614 std::vector<T *, slice_allocator<T *> >::push_back (obj);
615 obj->*indexmember = this->size ();
616 }
617
406 void insert (T *obj) 618 void insert (T *obj)
407 { 619 {
408 assert (!(obj->*index));
409 push_back (obj); 620 push_back (obj);
410 obj->*index = this->size ();
411 } 621 }
412 622
413 void insert (T &obj) 623 void insert (T &obj)
414 { 624 {
415 insert (&obj); 625 insert (&obj);
416 } 626 }
417 627
418 void erase (T *obj) 628 void erase (T *obj)
419 { 629 {
420 assert (obj->*index);
421 unsigned int pos = obj->*index; 630 unsigned int pos = obj->*indexmember;
422 obj->*index = 0; 631 obj->*indexmember = 0;
423 632
424 if (pos < this->size ()) 633 if (pos < this->size ())
425 { 634 {
426 (*this)[pos - 1] = (*this)[this->size () - 1]; 635 (*this)[pos - 1] = (*this)[this->size () - 1];
427 (*this)[pos - 1]->*index = pos; 636 (*this)[pos - 1]->*indexmember = pos;
428 } 637 }
429 638
430 this->pop_back (); 639 this->pop_back ();
431 } 640 }
432 641
433 void erase (T &obj) 642 void erase (T &obj)
434 { 643 {
435 errase (&obj); 644 erase (&obj);
436 } 645 }
437}; 646};
647
648/////////////////////////////////////////////////////////////////////////////
649
650// something like a vector or stack, but without
651// out of bounds checking
652template<typename T>
653struct fixed_stack
654{
655 T *data;
656 int size;
657 int max;
658
659 fixed_stack ()
660 : size (0), data (0)
661 {
662 }
663
664 fixed_stack (int max)
665 : size (0), max (max)
666 {
667 data = salloc<T> (max);
668 }
669
670 void reset (int new_max)
671 {
672 sfree (data, max);
673 size = 0;
674 max = new_max;
675 data = salloc<T> (max);
676 }
677
678 void free ()
679 {
680 sfree (data, max);
681 data = 0;
682 }
683
684 ~fixed_stack ()
685 {
686 sfree (data, max);
687 }
688
689 T &operator[](int idx)
690 {
691 return data [idx];
692 }
693
694 void push (T v)
695 {
696 data [size++] = v;
697 }
698
699 T &pop ()
700 {
701 return data [--size];
702 }
703
704 T remove (int idx)
705 {
706 T v = data [idx];
707
708 data [idx] = data [--size];
709
710 return v;
711 }
712};
713
714/////////////////////////////////////////////////////////////////////////////
438 715
439// basically does what strncpy should do, but appends "..." to strings exceeding length 716// basically does what strncpy should do, but appends "..." to strings exceeding length
717// returns the number of bytes actually used (including \0)
440void assign (char *dst, const char *src, int maxlen); 718int assign (char *dst, const char *src, int maxsize);
441 719
442// type-safe version of assign 720// type-safe version of assign
443template<int N> 721template<int N>
444inline void assign (char (&dst)[N], const char *src) 722inline int assign (char (&dst)[N], const char *src)
445{ 723{
446 assign ((char *)&dst, src, N); 724 return assign ((char *)&dst, src, N);
447} 725}
448 726
449typedef double tstamp; 727typedef double tstamp;
450 728
451// return current time as timestampe 729// return current time as timestamp
452tstamp now (); 730tstamp now ();
453 731
454int similar_direction (int a, int b); 732int similar_direction (int a, int b);
455 733
456// like printf, but returns a std::string 734// like v?sprintf, but returns a "static" buffer
457const std::string format (const char *format, ...); 735char *vformat (const char *format, va_list ap);
736char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
458 737
738// safety-check player input which will become object->msg
739bool msg_is_safe (const char *msg);
740
741/////////////////////////////////////////////////////////////////////////////
742// threads, very very thin wrappers around pthreads
743
744struct thread
745{
746 pthread_t id;
747
748 void start (void *(*start_routine)(void *), void *arg = 0);
749
750 void cancel ()
751 {
752 pthread_cancel (id);
753 }
754
755 void *join ()
756 {
757 void *ret;
758
759 if (pthread_join (id, &ret))
760 cleanup ("pthread_join failed", 1);
761
762 return ret;
763 }
764};
765
766// note that mutexes are not classes
767typedef pthread_mutex_t smutex;
768
769#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
770 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
771#else
772 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
459#endif 773#endif
460 774
775#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
776#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
777#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
778
779typedef pthread_cond_t scond;
780
781#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
782#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
783#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
784#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
785
786#endif
787

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines