ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.21 by root, Thu Dec 21 06:12:36 2006 UTC vs.
Revision 1.115 by root, Tue Apr 26 14:41:36 2011 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4#if __GNUC__ >= 3 26#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 27
28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32#include <pthread.h>
33
34#include <cstddef>
35#include <cmath>
36#include <new>
37#include <vector>
38
39#include <glib.h>
40
41#include <shstr.h>
42#include <traits.h>
43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr)
59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
6#else 67#else
7# define is_constant(c) 0 68#define array_length(name) (sizeof (name) / sizeof (name [0]))
8#endif 69#endif
9 70
10#include <cstddef> 71// very ugly macro that basically declares and initialises a variable
72// that is in scope for the next statement only
73// works only for stuff that can be assigned 0 and converts to false
74// (note: works great for pointers)
75// most ugly macro I ever wrote
76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
11 77
12#include <glib.h> 78// in range including end
79#define IN_RANGE_INC(val,beg,end) \
80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
13 81
14// use a gcc extension for auto declarations until ISO C++ sanctifies them 82// in range excluding end
15#define AUTODECL(var,expr) typeof(expr) var = (expr) 83#define IN_RANGE_EXC(val,beg,end) \
84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85
86void cleanup (const char *cause, bool make_core = false);
87void fork_abort (const char *msg);
88
89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
90// as a is often a constant while b is the variable. it is still a bug, though.
91template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
92template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119//clashes with C++0x
120template<typename T, typename U>
121static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129
130template<> inline float div (float val, float div) { return val / div; }
131template<> inline double div (double val, double div) { return val / div; }
132
133// div, round-up
134template<typename T> static inline T div_ru (T val, T div)
135{
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137}
138// div, round-down
139template<typename T> static inline T div_rd (T val, T div)
140{
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142}
143
144// lerp* only work correctly for min_in < max_in
145// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
146template<typename T>
147static inline T
148lerp (T val, T min_in, T max_in, T min_out, T max_out)
149{
150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151}
152
153// lerp, round-down
154template<typename T>
155static inline T
156lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157{
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159}
160
161// lerp, round-up
162template<typename T>
163static inline T
164lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165{
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
167}
168
169// lots of stuff taken from FXT
170
171/* Rotate right. This is used in various places for checksumming */
172//TODO: that sucks, use a better checksum algo
173static inline uint32_t
174rotate_right (uint32_t c, uint32_t count = 1)
175{
176 return (c << (32 - count)) | (c >> count);
177}
178
179static inline uint32_t
180rotate_left (uint32_t c, uint32_t count = 1)
181{
182 return (c >> (32 - count)) | (c << count);
183}
184
185// Return abs(a-b)
186// Both a and b must not have the most significant bit set
187static inline uint32_t
188upos_abs_diff (uint32_t a, uint32_t b)
189{
190 long d1 = b - a;
191 long d2 = (d1 & (d1 >> 31)) << 1;
192
193 return d1 - d2; // == (b - d) - (a + d);
194}
195
196// Both a and b must not have the most significant bit set
197static inline uint32_t
198upos_min (uint32_t a, uint32_t b)
199{
200 int32_t d = b - a;
201 d &= d >> 31;
202 return a + d;
203}
204
205// Both a and b must not have the most significant bit set
206static inline uint32_t
207upos_max (uint32_t a, uint32_t b)
208{
209 int32_t d = b - a;
210 d &= d >> 31;
211 return b - d;
212}
213
214// this is much faster than crossfire's original algorithm
215// on modern cpus
216inline int
217isqrt (int n)
218{
219 return (int)sqrtf ((float)n);
220}
221
222// this is kind of like the ^^ operator, if it would exist, without sequence point.
223// more handy than it looks like, due to the implicit !! done on its arguments
224inline bool
225logical_xor (bool a, bool b)
226{
227 return a != b;
228}
229
230inline bool
231logical_implies (bool a, bool b)
232{
233 return a <= b;
234}
235
236// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
237#if 0
238// and has a max. error of 6 in the range -100..+100.
239#else
240// and has a max. error of 9 in the range -100..+100.
241#endif
242inline int
243idistance (int dx, int dy)
244{
245 unsigned int dx_ = abs (dx);
246 unsigned int dy_ = abs (dy);
247
248#if 0
249 return dx_ > dy_
250 ? (dx_ * 61685 + dy_ * 26870) >> 16
251 : (dy_ * 61685 + dx_ * 26870) >> 16;
252#else
253 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
254#endif
255}
256
257// can be substantially faster than floor, if your value range allows for it
258template<typename T>
259inline T
260fastfloor (T x)
261{
262 return std::floor (x);
263}
264
265inline float
266fastfloor (float x)
267{
268 return sint32(x) - (x < 0);
269}
270
271inline double
272fastfloor (double x)
273{
274 return sint64(x) - (x < 0);
275}
276
277/*
278 * absdir(int): Returns a number between 1 and 8, which represent
279 * the "absolute" direction of a number (it actually takes care of
280 * "overflow" in previous calculations of a direction).
281 */
282inline int
283absdir (int d)
284{
285 return ((d - 1) & 7) + 1;
286}
287
288// avoid ctz name because netbsd or freebsd spams it's namespace with it
289#if GCC_VERSION(3,4)
290static inline int least_significant_bit (uint32_t x)
291{
292 return __builtin_ctz (x);
293}
294#else
295int least_significant_bit (uint32_t x);
296#endif
297
298#define for_all_bits_sparse_32(mask, idxvar) \
299 for (uint32_t idxvar, mask_ = mask; \
300 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
301
302extern ssize_t slice_alloc; // statistics
303
304void *salloc_ (int n) throw (std::bad_alloc);
305void *salloc_ (int n, void *src) throw (std::bad_alloc);
306
307// strictly the same as g_slice_alloc, but never returns 0
308template<typename T>
309inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
310
311// also copies src into the new area, like "memdup"
312// if src is 0, clears the memory
313template<typename T>
314inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
315
316// clears the memory
317template<typename T>
318inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
319
320// for symmetry
321template<typename T>
322inline void sfree (T *ptr, int n = 1) throw ()
323{
324 if (expect_true (ptr))
325 {
326 slice_alloc -= n * sizeof (T);
327 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
328 g_slice_free1 (n * sizeof (T), (void *)ptr);
329 assert (slice_alloc >= 0);//D
330 }
331}
332
333// nulls the pointer
334template<typename T>
335inline void sfree0 (T *&ptr, int n = 1) throw ()
336{
337 sfree<T> (ptr, n);
338 ptr = 0;
339}
16 340
17// makes dynamically allocated objects zero-initialised 341// makes dynamically allocated objects zero-initialised
18struct zero_initialised 342struct zero_initialised
19{ 343{
20 void *operator new (size_t s, void *p) 344 void *operator new (size_t s, void *p)
23 return p; 347 return p;
24 } 348 }
25 349
26 void *operator new (size_t s) 350 void *operator new (size_t s)
27 { 351 {
28 return g_slice_alloc0 (s); 352 return salloc0<char> (s);
29 } 353 }
30 354
31 void *operator new[] (size_t s) 355 void *operator new[] (size_t s)
32 { 356 {
33 return g_slice_alloc0 (s); 357 return salloc0<char> (s);
34 } 358 }
35 359
36 void operator delete (void *p, size_t s) 360 void operator delete (void *p, size_t s)
37 { 361 {
38 g_slice_free1 (s, p); 362 sfree ((char *)p, s);
39 } 363 }
40 364
41 void operator delete[] (void *p, size_t s) 365 void operator delete[] (void *p, size_t s)
42 { 366 {
43 g_slice_free1 (s, p); 367 sfree ((char *)p, s);
44 } 368 }
45}; 369};
46 370
47void *salloc_ (int n) throw (std::bad_alloc); 371// makes dynamically allocated objects zero-initialised
48void *salloc_ (int n, void *src) throw (std::bad_alloc); 372struct slice_allocated
49
50// strictly the same as g_slice_alloc, but never returns 0
51template<typename T>
52inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
53
54// also copies src into the new area, like "memdup"
55// if src is 0, clears the memory
56template<typename T>
57inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
58
59// clears the memory
60template<typename T>
61inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
62
63// for symmetry
64template<typename T>
65inline void sfree (T *ptr, int n = 1) throw ()
66{ 373{
67 g_slice_free1 (n * sizeof (T), (void *)ptr); 374 void *operator new (size_t s, void *p)
68} 375 {
376 return p;
377 }
378
379 void *operator new (size_t s)
380 {
381 return salloc<char> (s);
382 }
383
384 void *operator new[] (size_t s)
385 {
386 return salloc<char> (s);
387 }
388
389 void operator delete (void *p, size_t s)
390 {
391 sfree ((char *)p, s);
392 }
393
394 void operator delete[] (void *p, size_t s)
395 {
396 sfree ((char *)p, s);
397 }
398};
69 399
70// a STL-compatible allocator that uses g_slice 400// a STL-compatible allocator that uses g_slice
71// boy, this is verbose 401// boy, this is verbose
72template<typename Tp> 402template<typename Tp>
73struct slice_allocator 403struct slice_allocator
85 { 415 {
86 typedef slice_allocator<U> other; 416 typedef slice_allocator<U> other;
87 }; 417 };
88 418
89 slice_allocator () throw () { } 419 slice_allocator () throw () { }
90 slice_allocator (const slice_allocator &o) throw () { } 420 slice_allocator (const slice_allocator &) throw () { }
91 template<typename Tp2> 421 template<typename Tp2>
92 slice_allocator (const slice_allocator<Tp2> &) throw () { } 422 slice_allocator (const slice_allocator<Tp2> &) throw () { }
93 423
94 ~slice_allocator () { } 424 ~slice_allocator () { }
95 425
104 void deallocate (pointer p, size_type n) 434 void deallocate (pointer p, size_type n)
105 { 435 {
106 sfree<Tp> (p, n); 436 sfree<Tp> (p, n);
107 } 437 }
108 438
109 size_type max_size ()const throw () 439 size_type max_size () const throw ()
110 { 440 {
111 return size_t (-1) / sizeof (Tp); 441 return size_t (-1) / sizeof (Tp);
112 } 442 }
113 443
114 void construct (pointer p, const Tp &val) 444 void construct (pointer p, const Tp &val)
120 { 450 {
121 p->~Tp (); 451 p->~Tp ();
122 } 452 }
123}; 453};
124 454
455INTERFACE_CLASS (attachable)
125struct refcounted 456struct refcnt_base
126{ 457{
127 refcounted () : refcnt (0) { } 458 typedef int refcnt_t;
128// virtual ~refcounted (); 459 mutable refcnt_t ACC (RW, refcnt);
460
129 void refcnt_inc () { ++refcnt; } 461 MTH void refcnt_inc () const { ++refcnt; }
130 void refcnt_dec () { --refcnt; } 462 MTH void refcnt_dec () const { --refcnt; }
131 bool dead () { return refcnt == 0; } 463
132 mutable int refcnt; 464 refcnt_base () : refcnt (0) { }
133#if 0
134private:
135 static refcounted *rc_first;
136 refcounted *rc_next;
137#endif
138}; 465};
466
467// to avoid branches with more advanced compilers
468extern refcnt_base::refcnt_t refcnt_dummy;
139 469
140template<class T> 470template<class T>
141struct refptr 471struct refptr
142{ 472{
473 // p if not null
474 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
475
476 void refcnt_dec ()
477 {
478 if (!is_constant (p))
479 --*refcnt_ref ();
480 else if (p)
481 --p->refcnt;
482 }
483
484 void refcnt_inc ()
485 {
486 if (!is_constant (p))
487 ++*refcnt_ref ();
488 else if (p)
489 ++p->refcnt;
490 }
491
143 T *p; 492 T *p;
144 493
145 refptr () : p(0) { } 494 refptr () : p(0) { }
146 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 495 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
147 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 496 refptr (T *p) : p(p) { refcnt_inc (); }
148 ~refptr () { if (p) p->refcnt_dec (); } 497 ~refptr () { refcnt_dec (); }
149 498
150 const refptr<T> &operator =(T *o) 499 const refptr<T> &operator =(T *o)
151 { 500 {
501 // if decrementing ever destroys we need to reverse the order here
152 if (p) p->refcnt_dec (); 502 refcnt_dec ();
153 p = o; 503 p = o;
154 if (p) p->refcnt_inc (); 504 refcnt_inc ();
155
156 return *this; 505 return *this;
157 } 506 }
158 507
159 const refptr<T> &operator =(const refptr<T> o) 508 const refptr<T> &operator =(const refptr<T> &o)
160 { 509 {
161 *this = o.p; 510 *this = o.p;
162 return *this; 511 return *this;
163 } 512 }
164 513
165 T &operator * () const { return *p; } 514 T &operator * () const { return *p; }
166 T *operator ->() const { return p; } 515 T *operator ->() const { return p; }
167 516
168 operator T *() const { return p; } 517 operator T *() const { return p; }
169}; 518};
170 519
520typedef refptr<maptile> maptile_ptr;
521typedef refptr<object> object_ptr;
522typedef refptr<archetype> arch_ptr;
523typedef refptr<client> client_ptr;
524typedef refptr<player> player_ptr;
525typedef refptr<region> region_ptr;
526
527#define STRHSH_NULL 2166136261
528
529static inline uint32_t
530strhsh (const char *s)
531{
532 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
533 // it is about twice as fast as the one-at-a-time one,
534 // with good distribution.
535 // FNV-1a is faster on many cpus because the multiplication
536 // runs concurrently with the looping logic.
537 // we modify the hash a bit to improve its distribution
538 uint32_t hash = STRHSH_NULL;
539
540 while (*s)
541 hash = (hash ^ *s++) * 16777619U;
542
543 return hash ^ (hash >> 16);
544}
545
546static inline uint32_t
547memhsh (const char *s, size_t len)
548{
549 uint32_t hash = STRHSH_NULL;
550
551 while (len--)
552 hash = (hash ^ *s++) * 16777619U;
553
554 return hash;
555}
556
171struct str_hash 557struct str_hash
172{ 558{
173 std::size_t operator ()(const char *s) const 559 std::size_t operator ()(const char *s) const
174 { 560 {
175 unsigned long hash = 0;
176
177 /* use the one-at-a-time hash function, which supposedly is
178 * better than the djb2-like one used by perl5.005, but
179 * certainly is better then the bug used here before.
180 * see http://burtleburtle.net/bob/hash/doobs.html
181 */
182 while (*s)
183 {
184 hash += *s++;
185 hash += hash << 10;
186 hash ^= hash >> 6;
187 }
188
189 hash += hash << 3;
190 hash ^= hash >> 11;
191 hash += hash << 15;
192
193 return hash; 561 return strhsh (s);
562 }
563
564 std::size_t operator ()(const shstr &s) const
565 {
566 return strhsh (s);
194 } 567 }
195}; 568};
196 569
197struct str_equal 570struct str_equal
198{ 571{
200 { 573 {
201 return !strcmp (a, b); 574 return !strcmp (a, b);
202 } 575 }
203}; 576};
204 577
205#include <vector> 578// Mostly the same as std::vector, but insert/erase can reorder
206 579// the elements, making append(=insert)/remove O(1) instead of O(n).
580//
581// NOTE: only some forms of erase are available
207template<class obj> 582template<class T>
208struct unordered_vector : std::vector<obj, slice_allocator<obj> > 583struct unordered_vector : std::vector<T, slice_allocator<T> >
209{ 584{
210 typedef typename unordered_vector::iterator iterator; 585 typedef typename unordered_vector::iterator iterator;
211 586
212 void erase (unsigned int pos) 587 void erase (unsigned int pos)
213 { 588 {
221 { 596 {
222 erase ((unsigned int )(i - this->begin ())); 597 erase ((unsigned int )(i - this->begin ()));
223 } 598 }
224}; 599};
225 600
226template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 601// This container blends advantages of linked lists
227template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 602// (efficiency) with vectors (random access) by
228template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 603// by using an unordered vector and storing the vector
604// index inside the object.
605//
606// + memory-efficient on most 64 bit archs
607// + O(1) insert/remove
608// + free unique (but varying) id for inserted objects
609// + cache-friendly iteration
610// - only works for pointers to structs
611//
612// NOTE: only some forms of erase/insert are available
613typedef int object_vector_index;
229 614
230template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 615template<class T, object_vector_index T::*indexmember>
616struct object_vector : std::vector<T *, slice_allocator<T *> >
617{
618 typedef typename object_vector::iterator iterator;
619
620 bool contains (const T *obj) const
621 {
622 return obj->*indexmember;
623 }
624
625 iterator find (const T *obj)
626 {
627 return obj->*indexmember
628 ? this->begin () + obj->*indexmember - 1
629 : this->end ();
630 }
631
632 void push_back (T *obj)
633 {
634 std::vector<T *, slice_allocator<T *> >::push_back (obj);
635 obj->*indexmember = this->size ();
636 }
637
638 void insert (T *obj)
639 {
640 push_back (obj);
641 }
642
643 void insert (T &obj)
644 {
645 insert (&obj);
646 }
647
648 void erase (T *obj)
649 {
650 unsigned int pos = obj->*indexmember;
651 obj->*indexmember = 0;
652
653 if (pos < this->size ())
654 {
655 (*this)[pos - 1] = (*this)[this->size () - 1];
656 (*this)[pos - 1]->*indexmember = pos;
657 }
658
659 this->pop_back ();
660 }
661
662 void erase (T &obj)
663 {
664 erase (&obj);
665 }
666};
667
668/////////////////////////////////////////////////////////////////////////////
669
670// something like a vector or stack, but without
671// out of bounds checking
672template<typename T>
673struct fixed_stack
674{
675 T *data;
676 int size;
677 int max;
678
679 fixed_stack ()
680 : size (0), data (0)
681 {
682 }
683
684 fixed_stack (int max)
685 : size (0), max (max)
686 {
687 data = salloc<T> (max);
688 }
689
690 void reset (int new_max)
691 {
692 sfree (data, max);
693 size = 0;
694 max = new_max;
695 data = salloc<T> (max);
696 }
697
698 void free ()
699 {
700 sfree (data, max);
701 data = 0;
702 }
703
704 ~fixed_stack ()
705 {
706 sfree (data, max);
707 }
708
709 T &operator[](int idx)
710 {
711 return data [idx];
712 }
713
714 void push (T v)
715 {
716 data [size++] = v;
717 }
718
719 T &pop ()
720 {
721 return data [--size];
722 }
723
724 T remove (int idx)
725 {
726 T v = data [idx];
727
728 data [idx] = data [--size];
729
730 return v;
731 }
732};
733
734/////////////////////////////////////////////////////////////////////////////
231 735
232// basically does what strncpy should do, but appends "..." to strings exceeding length 736// basically does what strncpy should do, but appends "..." to strings exceeding length
737// returns the number of bytes actually used (including \0)
233void assign (char *dst, const char *src, int maxlen); 738int assign (char *dst, const char *src, int maxsize);
234 739
235// type-safe version of assign 740// type-safe version of assign
236template<int N> 741template<int N>
237inline void assign (char (&dst)[N], const char *src) 742inline int assign (char (&dst)[N], const char *src)
238{ 743{
239 assign ((char *)&dst, src, N); 744 return assign ((char *)&dst, src, N);
240} 745}
241 746
242typedef double tstamp; 747typedef double tstamp;
243 748
244// return current time as timestampe 749// return current time as timestamp
245tstamp now (); 750tstamp now ();
246 751
752int similar_direction (int a, int b);
753
754// like v?sprintf, but returns a "static" buffer
755char *vformat (const char *format, va_list ap);
756char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
757
758// safety-check player input which will become object->msg
759bool msg_is_safe (const char *msg);
760
761/////////////////////////////////////////////////////////////////////////////
762// threads, very very thin wrappers around pthreads
763
764struct thread
765{
766 pthread_t id;
767
768 void start (void *(*start_routine)(void *), void *arg = 0);
769
770 void cancel ()
771 {
772 pthread_cancel (id);
773 }
774
775 void *join ()
776 {
777 void *ret;
778
779 if (pthread_join (id, &ret))
780 cleanup ("pthread_join failed", 1);
781
782 return ret;
783 }
784};
785
786// note that mutexes are not classes
787typedef pthread_mutex_t smutex;
788
789#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
790 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
791#else
792 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
247#endif 793#endif
248 794
795#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
796#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
797#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
798
799typedef pthread_cond_t scond;
800
801#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
802#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
803#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
804#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
805
806#endif
807

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines