ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.61 by root, Fri Jan 25 18:09:23 2008 UTC vs.
Revision 1.120 by root, Mon Oct 29 23:55:54 2012 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Deliantra is free software: you can redistribute it and/or modify 6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * it under the terms of the GNU General Public License as published by 7 * the terms of the Affero GNU General Public License as published by the
8 * the Free Software Foundation, either version 3 of the License, or 8 * Free Software Foundation, either version 3 of the License, or (at your
9 * (at your option) any later version. 9 * option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the Affero GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
18 * 19 *
19 * The authors can be reached via e-mail to <support@deliantra.net> 20 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 21 */
21 22
22#ifndef UTIL_H__ 23#ifndef UTIL_H__
23#define UTIL_H__ 24#define UTIL_H__
24 25
25//#define PREFER_MALLOC 26#include <compiler.h>
26//#define DEBUG_SALLOC
27 27
28#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30# define expect(expr,value) __builtin_expect ((expr),(value)) 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32#else
33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
36#endif
37 31
38#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4) 32#include <pthread.h>
39# define decltype(x) typeof(x)
40#endif
41
42// put into ifs if you are very sure that the expression
43// is mostly true or mosty false. note that these return
44// booleans, not the expression.
45#define expect_false(expr) expect ((expr) != 0, 0)
46#define expect_true(expr) expect ((expr) != 0, 1)
47 33
48#include <cstddef> 34#include <cstddef>
49#include <cmath> 35#include <cmath>
50#include <new> 36#include <new>
51#include <vector> 37#include <vector>
53#include <glib.h> 39#include <glib.h>
54 40
55#include <shstr.h> 41#include <shstr.h>
56#include <traits.h> 42#include <traits.h>
57 43
58#ifdef DEBUG_SALLOC 44#if DEBUG_SALLOC
59# define g_slice_alloc0(s) debug_slice_alloc0(s) 45# define g_slice_alloc0(s) debug_slice_alloc0(s)
60# define g_slice_alloc(s) debug_slice_alloc(s) 46# define g_slice_alloc(s) debug_slice_alloc(s)
61# define g_slice_free1(s,p) debug_slice_free1(s,p) 47# define g_slice_free1(s,p) debug_slice_free1(s,p)
62void *g_slice_alloc (unsigned long size); 48void *g_slice_alloc (unsigned long size);
63void *g_slice_alloc0 (unsigned long size); 49void *g_slice_alloc0 (unsigned long size);
64void g_slice_free1 (unsigned long size, void *ptr); 50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
65#endif 55#endif
66 56
67// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
68#define auto(var,expr) decltype(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
69 59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
70// very ugly macro that basicaly declares and initialises a variable 71// very ugly macro that basically declares and initialises a variable
71// that is in scope for the next statement only 72// that is in scope for the next statement only
72// works only for stuff that can be assigned 0 and converts to false 73// works only for stuff that can be assigned 0 and converts to false
73// (note: works great for pointers) 74// (note: works great for pointers)
74// most ugly macro I ever wrote 75// most ugly macro I ever wrote
75#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
80 81
81// in range excluding end 82// in range excluding end
82#define IN_RANGE_EXC(val,beg,end) \ 83#define IN_RANGE_EXC(val,beg,end) \
83 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
84 85
86void cleanup (const char *cause, bool make_core = false);
85void fork_abort (const char *msg); 87void fork_abort (const char *msg);
86 88
87// rationale for using (U) not (T) is to reduce signed/unsigned issues, 89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
88// as a is often a constant while b is the variable. it is still a bug, though. 90// as a is often a constant while b is the variable. it is still a bug, though.
89template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 91template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
90template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 92template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
91template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
92 94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
93template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
94 100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119//clashes with C++0x
120template<typename T, typename U>
121static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129
130template<> inline float div (float val, float div) { return val / div; }
131template<> inline double div (double val, double div) { return val / div; }
132
133// div, round-up
134template<typename T> static inline T div_ru (T val, T div)
135{
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137}
138// div, round-down
139template<typename T> static inline T div_rd (T val, T div)
140{
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142}
143
144// lerp* only work correctly for min_in < max_in
145// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
95template<typename T> 146template<typename T>
96static inline T 147static inline T
97lerp (T val, T min_in, T max_in, T min_out, T max_out) 148lerp (T val, T min_in, T max_in, T min_out, T max_out)
98{ 149{
99 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151}
152
153// lerp, round-down
154template<typename T>
155static inline T
156lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157{
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159}
160
161// lerp, round-up
162template<typename T>
163static inline T
164lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165{
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
100} 167}
101 168
102// lots of stuff taken from FXT 169// lots of stuff taken from FXT
103 170
104/* Rotate right. This is used in various places for checksumming */ 171/* Rotate right. This is used in various places for checksumming */
142 int32_t d = b - a; 209 int32_t d = b - a;
143 d &= d >> 31; 210 d &= d >> 31;
144 return b - d; 211 return b - d;
145} 212}
146 213
147// this is much faster than crossfires original algorithm 214// this is much faster than crossfire's original algorithm
148// on modern cpus 215// on modern cpus
149inline int 216inline int
150isqrt (int n) 217isqrt (int n)
151{ 218{
152 return (int)sqrtf ((float)n); 219 return (int)sqrtf ((float)n);
220}
221
222// this is kind of like the ^^ operator, if it would exist, without sequence point.
223// more handy than it looks like, due to the implicit !! done on its arguments
224inline bool
225logical_xor (bool a, bool b)
226{
227 return a != b;
228}
229
230inline bool
231logical_implies (bool a, bool b)
232{
233 return a <= b;
153} 234}
154 235
155// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 236// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
156#if 0 237#if 0
157// and has a max. error of 6 in the range -100..+100. 238// and has a max. error of 6 in the range -100..+100.
171#else 252#else
172 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 253 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
173#endif 254#endif
174} 255}
175 256
257// can be substantially faster than floor, if your value range allows for it
258template<typename T>
259inline T
260fastfloor (T x)
261{
262 return std::floor (x);
263}
264
265inline float
266fastfloor (float x)
267{
268 return sint32(x) - (x < 0);
269}
270
271inline double
272fastfloor (double x)
273{
274 return sint64(x) - (x < 0);
275}
276
176/* 277/*
177 * absdir(int): Returns a number between 1 and 8, which represent 278 * absdir(int): Returns a number between 1 and 8, which represent
178 * the "absolute" direction of a number (it actually takes care of 279 * the "absolute" direction of a number (it actually takes care of
179 * "overflow" in previous calculations of a direction). 280 * "overflow" in previous calculations of a direction).
180 */ 281 */
182absdir (int d) 283absdir (int d)
183{ 284{
184 return ((d - 1) & 7) + 1; 285 return ((d - 1) & 7) + 1;
185} 286}
186 287
288// avoid ctz name because netbsd or freebsd spams it's namespace with it
289#if GCC_VERSION(3,4)
290static inline int least_significant_bit (uint32_t x)
291{
292 return __builtin_ctz (x);
293}
294#else
295int least_significant_bit (uint32_t x);
296#endif
297
298#define for_all_bits_sparse_32(mask, idxvar) \
299 for (uint32_t idxvar, mask_ = mask; \
300 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
301
187extern size_t slice_alloc; // statistics 302extern ssize_t slice_alloc; // statistics
303
304void *salloc_ (int n) throw (std::bad_alloc);
305void *salloc_ (int n, void *src) throw (std::bad_alloc);
306
307// strictly the same as g_slice_alloc, but never returns 0
308template<typename T>
309inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
310
311// also copies src into the new area, like "memdup"
312// if src is 0, clears the memory
313template<typename T>
314inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
315
316// clears the memory
317template<typename T>
318inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
319
320// for symmetry
321template<typename T>
322inline void sfree (T *ptr, int n = 1) throw ()
323{
324 if (expect_true (ptr))
325 {
326 slice_alloc -= n * sizeof (T);
327 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
328 g_slice_free1 (n * sizeof (T), (void *)ptr);
329 }
330}
331
332// nulls the pointer
333template<typename T>
334inline void sfree0 (T *&ptr, int n = 1) throw ()
335{
336 sfree<T> (ptr, n);
337 ptr = 0;
338}
188 339
189// makes dynamically allocated objects zero-initialised 340// makes dynamically allocated objects zero-initialised
190struct zero_initialised 341struct zero_initialised
191{ 342{
192 void *operator new (size_t s, void *p) 343 void *operator new (size_t s, void *p)
195 return p; 346 return p;
196 } 347 }
197 348
198 void *operator new (size_t s) 349 void *operator new (size_t s)
199 { 350 {
200 slice_alloc += s;
201 return g_slice_alloc0 (s); 351 return salloc0<char> (s);
202 } 352 }
203 353
204 void *operator new[] (size_t s) 354 void *operator new[] (size_t s)
205 { 355 {
206 slice_alloc += s;
207 return g_slice_alloc0 (s); 356 return salloc0<char> (s);
208 } 357 }
209 358
210 void operator delete (void *p, size_t s) 359 void operator delete (void *p, size_t s)
211 { 360 {
212 slice_alloc -= s; 361 sfree ((char *)p, s);
213 g_slice_free1 (s, p);
214 } 362 }
215 363
216 void operator delete[] (void *p, size_t s) 364 void operator delete[] (void *p, size_t s)
217 { 365 {
218 slice_alloc -= s; 366 sfree ((char *)p, s);
219 g_slice_free1 (s, p);
220 } 367 }
221}; 368};
222 369
223void *salloc_ (int n) throw (std::bad_alloc); 370// makes dynamically allocated objects zero-initialised
224void *salloc_ (int n, void *src) throw (std::bad_alloc); 371struct slice_allocated
225
226// strictly the same as g_slice_alloc, but never returns 0
227template<typename T>
228inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
229
230// also copies src into the new area, like "memdup"
231// if src is 0, clears the memory
232template<typename T>
233inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
234
235// clears the memory
236template<typename T>
237inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
238
239// for symmetry
240template<typename T>
241inline void sfree (T *ptr, int n = 1) throw ()
242{ 372{
243#ifdef PREFER_MALLOC 373 void *operator new (size_t s, void *p)
244 free (ptr); 374 {
245#else 375 return p;
246 slice_alloc -= n * sizeof (T); 376 }
247 g_slice_free1 (n * sizeof (T), (void *)ptr); 377
248#endif 378 void *operator new (size_t s)
249} 379 {
380 return salloc<char> (s);
381 }
382
383 void *operator new[] (size_t s)
384 {
385 return salloc<char> (s);
386 }
387
388 void operator delete (void *p, size_t s)
389 {
390 sfree ((char *)p, s);
391 }
392
393 void operator delete[] (void *p, size_t s)
394 {
395 sfree ((char *)p, s);
396 }
397};
250 398
251// a STL-compatible allocator that uses g_slice 399// a STL-compatible allocator that uses g_slice
252// boy, this is verbose 400// boy, this is verbose
253template<typename Tp> 401template<typename Tp>
254struct slice_allocator 402struct slice_allocator
266 { 414 {
267 typedef slice_allocator<U> other; 415 typedef slice_allocator<U> other;
268 }; 416 };
269 417
270 slice_allocator () throw () { } 418 slice_allocator () throw () { }
271 slice_allocator (const slice_allocator &o) throw () { } 419 slice_allocator (const slice_allocator &) throw () { }
272 template<typename Tp2> 420 template<typename Tp2>
273 slice_allocator (const slice_allocator<Tp2> &) throw () { } 421 slice_allocator (const slice_allocator<Tp2> &) throw () { }
274 422
275 ~slice_allocator () { } 423 ~slice_allocator () { }
276 424
285 void deallocate (pointer p, size_type n) 433 void deallocate (pointer p, size_type n)
286 { 434 {
287 sfree<Tp> (p, n); 435 sfree<Tp> (p, n);
288 } 436 }
289 437
290 size_type max_size ()const throw () 438 size_type max_size () const throw ()
291 { 439 {
292 return size_t (-1) / sizeof (Tp); 440 return size_t (-1) / sizeof (Tp);
293 } 441 }
294 442
295 void construct (pointer p, const Tp &val) 443 void construct (pointer p, const Tp &val)
301 { 449 {
302 p->~Tp (); 450 p->~Tp ();
303 } 451 }
304}; 452};
305 453
306// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 454// basically a memory area, but refcounted
307// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 455struct refcnt_buf
308// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
309struct tausworthe_random_generator
310{ 456{
311 // generator 457 char *data;
312 uint32_t state [4];
313 458
314 void operator =(const tausworthe_random_generator &src) 459 refcnt_buf (size_t size = 0);
315 { 460 refcnt_buf (void *data, size_t size);
316 state [0] = src.state [0];
317 state [1] = src.state [1];
318 state [2] = src.state [2];
319 state [3] = src.state [3];
320 }
321 461
322 void seed (uint32_t seed); 462 refcnt_buf (const refcnt_buf &src)
323 uint32_t next ();
324
325 // uniform distribution
326 uint32_t operator ()(uint32_t num)
327 { 463 {
328 return is_constant (num) 464 data = src.data;
329 ? (next () * (uint64_t)num) >> 32U 465 ++_refcnt ();
330 : get_range (num);
331 } 466 }
332 467
333 // return a number within (min .. max) 468 ~refcnt_buf ();
334 int operator () (int r_min, int r_max)
335 {
336 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
337 ? r_min + operator ()(r_max - r_min + 1)
338 : get_range (r_min, r_max);
339 }
340 469
341 double operator ()() 470 refcnt_buf &operator =(const refcnt_buf &src);
471
472 operator char *()
342 { 473 {
343 return this->next () / (double)0xFFFFFFFFU; 474 return data;
475 }
476
477 size_t size () const
478 {
479 return _size ();
344 } 480 }
345 481
346protected: 482protected:
347 uint32_t get_range (uint32_t r_max); 483 enum {
348 int get_range (int r_min, int r_max); 484 overhead = sizeof (unsigned int) * 2
349}; 485 };
350 486
351typedef tausworthe_random_generator rand_gen; 487 unsigned int &_size () const
488 {
489 return ((unsigned int *)data)[-2];
490 }
352 491
353extern rand_gen rndm; 492 unsigned int &_refcnt () const
493 {
494 return ((unsigned int *)data)[-1];
495 }
496
497 void _alloc (unsigned int size)
498 {
499 data = ((char *)salloc<char> (size + overhead)) + overhead;
500 _size () = size;
501 _refcnt () = 1;
502 }
503
504 void dec ()
505 {
506 if (!--_refcnt ())
507 sfree<char> (data - overhead, size () + overhead);
508 }
509};
354 510
355INTERFACE_CLASS (attachable) 511INTERFACE_CLASS (attachable)
356struct refcnt_base 512struct refcnt_base
357{ 513{
358 typedef int refcnt_t; 514 typedef int refcnt_t;
420typedef refptr<maptile> maptile_ptr; 576typedef refptr<maptile> maptile_ptr;
421typedef refptr<object> object_ptr; 577typedef refptr<object> object_ptr;
422typedef refptr<archetype> arch_ptr; 578typedef refptr<archetype> arch_ptr;
423typedef refptr<client> client_ptr; 579typedef refptr<client> client_ptr;
424typedef refptr<player> player_ptr; 580typedef refptr<player> player_ptr;
581typedef refptr<region> region_ptr;
582
583#define STRHSH_NULL 2166136261
584
585static inline uint32_t
586strhsh (const char *s)
587{
588 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
589 // it is about twice as fast as the one-at-a-time one,
590 // with good distribution.
591 // FNV-1a is faster on many cpus because the multiplication
592 // runs concurrently with the looping logic.
593 // we modify the hash a bit to improve its distribution
594 uint32_t hash = STRHSH_NULL;
595
596 while (*s)
597 hash = (hash ^ *s++) * 16777619U;
598
599 return hash ^ (hash >> 16);
600}
601
602static inline uint32_t
603memhsh (const char *s, size_t len)
604{
605 uint32_t hash = STRHSH_NULL;
606
607 while (len--)
608 hash = (hash ^ *s++) * 16777619U;
609
610 return hash;
611}
425 612
426struct str_hash 613struct str_hash
427{ 614{
428 std::size_t operator ()(const char *s) const 615 std::size_t operator ()(const char *s) const
429 { 616 {
430 unsigned long hash = 0;
431
432 /* use the one-at-a-time hash function, which supposedly is
433 * better than the djb2-like one used by perl5.005, but
434 * certainly is better then the bug used here before.
435 * see http://burtleburtle.net/bob/hash/doobs.html
436 */
437 while (*s)
438 {
439 hash += *s++;
440 hash += hash << 10;
441 hash ^= hash >> 6;
442 }
443
444 hash += hash << 3;
445 hash ^= hash >> 11;
446 hash += hash << 15;
447
448 return hash; 617 return strhsh (s);
618 }
619
620 std::size_t operator ()(const shstr &s) const
621 {
622 return strhsh (s);
449 } 623 }
450}; 624};
451 625
452struct str_equal 626struct str_equal
453{ 627{
480 } 654 }
481}; 655};
482 656
483// This container blends advantages of linked lists 657// This container blends advantages of linked lists
484// (efficiency) with vectors (random access) by 658// (efficiency) with vectors (random access) by
485// by using an unordered vector and storing the vector 659// using an unordered vector and storing the vector
486// index inside the object. 660// index inside the object.
487// 661//
488// + memory-efficient on most 64 bit archs 662// + memory-efficient on most 64 bit archs
489// + O(1) insert/remove 663// + O(1) insert/remove
490// + free unique (but varying) id for inserted objects 664// + free unique (but varying) id for inserted objects
527 insert (&obj); 701 insert (&obj);
528 } 702 }
529 703
530 void erase (T *obj) 704 void erase (T *obj)
531 { 705 {
532 unsigned int pos = obj->*indexmember; 706 object_vector_index pos = obj->*indexmember;
533 obj->*indexmember = 0; 707 obj->*indexmember = 0;
534 708
535 if (pos < this->size ()) 709 if (pos < this->size ())
536 { 710 {
537 (*this)[pos - 1] = (*this)[this->size () - 1]; 711 (*this)[pos - 1] = (*this)[this->size () - 1];
545 { 719 {
546 erase (&obj); 720 erase (&obj);
547 } 721 }
548}; 722};
549 723
724/////////////////////////////////////////////////////////////////////////////
725
726// something like a vector or stack, but without
727// out of bounds checking
728template<typename T>
729struct fixed_stack
730{
731 T *data;
732 int size;
733 int max;
734
735 fixed_stack ()
736 : size (0), data (0)
737 {
738 }
739
740 fixed_stack (int max)
741 : size (0), max (max)
742 {
743 data = salloc<T> (max);
744 }
745
746 void reset (int new_max)
747 {
748 sfree (data, max);
749 size = 0;
750 max = new_max;
751 data = salloc<T> (max);
752 }
753
754 void free ()
755 {
756 sfree (data, max);
757 data = 0;
758 }
759
760 ~fixed_stack ()
761 {
762 sfree (data, max);
763 }
764
765 T &operator[](int idx)
766 {
767 return data [idx];
768 }
769
770 void push (T v)
771 {
772 data [size++] = v;
773 }
774
775 T &pop ()
776 {
777 return data [--size];
778 }
779
780 T remove (int idx)
781 {
782 T v = data [idx];
783
784 data [idx] = data [--size];
785
786 return v;
787 }
788};
789
790/////////////////////////////////////////////////////////////////////////////
791
550// basically does what strncpy should do, but appends "..." to strings exceeding length 792// basically does what strncpy should do, but appends "..." to strings exceeding length
793// returns the number of bytes actually used (including \0)
551void assign (char *dst, const char *src, int maxlen); 794int assign (char *dst, const char *src, int maxsize);
552 795
553// type-safe version of assign 796// type-safe version of assign
554template<int N> 797template<int N>
555inline void assign (char (&dst)[N], const char *src) 798inline int assign (char (&dst)[N], const char *src)
556{ 799{
557 assign ((char *)&dst, src, N); 800 return assign ((char *)&dst, src, N);
558} 801}
559 802
560typedef double tstamp; 803typedef double tstamp;
561 804
562// return current time as timestamp 805// return current time as timestamp
563tstamp now (); 806tstamp now ();
564 807
565int similar_direction (int a, int b); 808int similar_direction (int a, int b);
566 809
567// like sprintf, but returns a "static" buffer 810// like v?sprintf, but returns a "static" buffer
568const char *format (const char *format, ...); 811char *vformat (const char *format, va_list ap);
812char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
569 813
814// safety-check player input which will become object->msg
815bool msg_is_safe (const char *msg);
816
817/////////////////////////////////////////////////////////////////////////////
818// threads, very very thin wrappers around pthreads
819
820struct thread
821{
822 pthread_t id;
823
824 void start (void *(*start_routine)(void *), void *arg = 0);
825
826 void cancel ()
827 {
828 pthread_cancel (id);
829 }
830
831 void *join ()
832 {
833 void *ret;
834
835 if (pthread_join (id, &ret))
836 cleanup ("pthread_join failed", 1);
837
838 return ret;
839 }
840};
841
842// note that mutexes are not classes
843typedef pthread_mutex_t smutex;
844
845#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
846 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
847#else
848 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
570#endif 849#endif
571 850
851#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
852#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
853#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
854
855typedef pthread_cond_t scond;
856
857#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
858#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
859#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
860#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
861
862#endif
863

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines