ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.35 by root, Fri Jan 19 22:47:57 2007 UTC vs.
Revision 1.122 by root, Mon Nov 12 02:39:51 2012 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4#if __GNUC__ >= 3 26#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 27
6#else 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) 0 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#endif 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32#include <pthread.h>
9 33
10#include <cstddef> 34#include <cstddef>
11#include <cmath> 35#include <cmath>
12#include <new> 36#include <new>
13#include <vector> 37#include <vector>
15#include <glib.h> 39#include <glib.h>
16 40
17#include <shstr.h> 41#include <shstr.h>
18#include <traits.h> 42#include <traits.h>
19 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
20// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
21#define AUTODECL(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
22 59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
23// very ugly macro that basicaly declares and initialises a variable 71// very ugly macro that basically declares and initialises a variable
24// that is in scope for the next statement only 72// that is in scope for the next statement only
25// works only for stuff that can be assigned 0 and converts to false 73// works only for stuff that can be assigned 0 and converts to false
26// (note: works great for pointers) 74// (note: works great for pointers)
27// most ugly macro I ever wrote 75// most ugly macro I ever wrote
28#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
29 77
30// in range including end 78// in range including end
31#define IN_RANGE_INC(val,beg,end) \ 79#define IN_RANGE_INC(val,beg,end) \
32 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
33 81
34// in range excluding end 82// in range excluding end
35#define IN_RANGE_EXC(val,beg,end) \ 83#define IN_RANGE_EXC(val,beg,end) \
36 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
37 85
86void cleanup (const char *cause, bool make_core = false);
38void fork_abort (const char *msg); 87void fork_abort (const char *msg);
39 88
40// rationale for using (U) not (T) is to reduce signed/unsigned issues, 89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
41// as a is often a constant while b is the variable. it is still a bug, though. 90// as a is often a constant while b is the variable. it is still a bug, though.
42template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 91template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
43template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 92template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
44template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
45 94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
46template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
47 100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119//clashes with C++0x
120template<typename T, typename U>
121static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129
130template<> inline float div (float val, float div) { return val / div; }
131template<> inline double div (double val, double div) { return val / div; }
132
133// div, round-up
134template<typename T> static inline T div_ru (T val, T div)
135{
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137}
138// div, round-down
139template<typename T> static inline T div_rd (T val, T div)
140{
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142}
143
144// lerp* only work correctly for min_in < max_in
145// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
146template<typename T>
147static inline T
148lerp (T val, T min_in, T max_in, T min_out, T max_out)
149{
150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151}
152
153// lerp, round-down
154template<typename T>
155static inline T
156lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157{
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159}
160
161// lerp, round-up
162template<typename T>
163static inline T
164lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165{
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
167}
168
169// lots of stuff taken from FXT
170
171/* Rotate right. This is used in various places for checksumming */
172//TODO: that sucks, use a better checksum algo
173static inline uint32_t
174rotate_right (uint32_t c, uint32_t count = 1)
175{
176 return (c << (32 - count)) | (c >> count);
177}
178
179static inline uint32_t
180rotate_left (uint32_t c, uint32_t count = 1)
181{
182 return (c >> (32 - count)) | (c << count);
183}
184
185// Return abs(a-b)
186// Both a and b must not have the most significant bit set
187static inline uint32_t
188upos_abs_diff (uint32_t a, uint32_t b)
189{
190 long d1 = b - a;
191 long d2 = (d1 & (d1 >> 31)) << 1;
192
193 return d1 - d2; // == (b - d) - (a + d);
194}
195
196// Both a and b must not have the most significant bit set
197static inline uint32_t
198upos_min (uint32_t a, uint32_t b)
199{
200 int32_t d = b - a;
201 d &= d >> 31;
202 return a + d;
203}
204
205// Both a and b must not have the most significant bit set
206static inline uint32_t
207upos_max (uint32_t a, uint32_t b)
208{
209 int32_t d = b - a;
210 d &= d >> 31;
211 return b - d;
212}
213
48// this is much faster than crossfires original algorithm 214// this is much faster than crossfire's original algorithm
49// on modern cpus 215// on modern cpus
50inline int 216inline int
51isqrt (int n) 217isqrt (int n)
52{ 218{
53 return (int)sqrtf ((float)n); 219 return (int)sqrtf ((float)n);
220}
221
222// this is kind of like the ^^ operator, if it would exist, without sequence point.
223// more handy than it looks like, due to the implicit !! done on its arguments
224inline bool
225logical_xor (bool a, bool b)
226{
227 return a != b;
228}
229
230inline bool
231logical_implies (bool a, bool b)
232{
233 return a <= b;
54} 234}
55 235
56// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 236// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
57#if 0 237#if 0
58// and has a max. error of 6 in the range -100..+100. 238// and has a max. error of 6 in the range -100..+100.
59#else 239#else
60// and has a max. error of 9 in the range -100..+100. 240// and has a max. error of 9 in the range -100..+100.
61#endif 241#endif
62inline int 242inline int
63idistance (int dx, int dy) 243idistance (int dx, int dy)
64{ 244{
65 unsigned int dx_ = abs (dx); 245 unsigned int dx_ = abs (dx);
66 unsigned int dy_ = abs (dy); 246 unsigned int dy_ = abs (dy);
67 247
68#if 0 248#if 0
69 return dx_ > dy_ 249 return dx_ > dy_
72#else 252#else
73 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 253 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
74#endif 254#endif
75} 255}
76 256
257// can be substantially faster than floor, if your value range allows for it
258template<typename T>
259inline T
260fastfloor (T x)
261{
262 return std::floor (x);
263}
264
265inline float
266fastfloor (float x)
267{
268 return sint32(x) - (x < 0);
269}
270
271inline double
272fastfloor (double x)
273{
274 return sint64(x) - (x < 0);
275}
276
77/* 277/*
78 * absdir(int): Returns a number between 1 and 8, which represent 278 * absdir(int): Returns a number between 1 and 8, which represent
79 * the "absolute" direction of a number (it actually takes care of 279 * the "absolute" direction of a number (it actually takes care of
80 * "overflow" in previous calculations of a direction). 280 * "overflow" in previous calculations of a direction).
81 */ 281 */
83absdir (int d) 283absdir (int d)
84{ 284{
85 return ((d - 1) & 7) + 1; 285 return ((d - 1) & 7) + 1;
86} 286}
87 287
288// avoid ctz name because netbsd or freebsd spams it's namespace with it
289#if GCC_VERSION(3,4)
290static inline int least_significant_bit (uint32_t x)
291{
292 return __builtin_ctz (x);
293}
294#else
295int least_significant_bit (uint32_t x);
296#endif
297
298#define for_all_bits_sparse_32(mask, idxvar) \
299 for (uint32_t idxvar, mask_ = mask; \
300 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
301
302extern ssize_t slice_alloc; // statistics
303
304void *salloc_ (int n) throw (std::bad_alloc);
305void *salloc_ (int n, void *src) throw (std::bad_alloc);
306
307// strictly the same as g_slice_alloc, but never returns 0
308template<typename T>
309inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
310
311// also copies src into the new area, like "memdup"
312// if src is 0, clears the memory
313template<typename T>
314inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
315
316// clears the memory
317template<typename T>
318inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
319
320// for symmetry
321template<typename T>
322inline void sfree (T *ptr, int n = 1) throw ()
323{
324 if (expect_true (ptr))
325 {
326 slice_alloc -= n * sizeof (T);
327 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
328 g_slice_free1 (n * sizeof (T), (void *)ptr);
329 }
330}
331
332// nulls the pointer
333template<typename T>
334inline void sfree0 (T *&ptr, int n = 1) throw ()
335{
336 sfree<T> (ptr, n);
337 ptr = 0;
338}
339
88// makes dynamically allocated objects zero-initialised 340// makes dynamically allocated objects zero-initialised
89struct zero_initialised 341struct zero_initialised
90{ 342{
91 void *operator new (size_t s, void *p) 343 void *operator new (size_t s, void *p)
92 { 344 {
94 return p; 346 return p;
95 } 347 }
96 348
97 void *operator new (size_t s) 349 void *operator new (size_t s)
98 { 350 {
99 return g_slice_alloc0 (s); 351 return salloc0<char> (s);
100 } 352 }
101 353
102 void *operator new[] (size_t s) 354 void *operator new[] (size_t s)
103 { 355 {
104 return g_slice_alloc0 (s); 356 return salloc0<char> (s);
105 } 357 }
106 358
107 void operator delete (void *p, size_t s) 359 void operator delete (void *p, size_t s)
108 { 360 {
109 g_slice_free1 (s, p); 361 sfree ((char *)p, s);
110 } 362 }
111 363
112 void operator delete[] (void *p, size_t s) 364 void operator delete[] (void *p, size_t s)
113 { 365 {
114 g_slice_free1 (s, p); 366 sfree ((char *)p, s);
115 } 367 }
116}; 368};
117 369
118void *salloc_ (int n) throw (std::bad_alloc); 370// makes dynamically allocated objects zero-initialised
119void *salloc_ (int n, void *src) throw (std::bad_alloc); 371struct slice_allocated
120
121// strictly the same as g_slice_alloc, but never returns 0
122template<typename T>
123inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
124
125// also copies src into the new area, like "memdup"
126// if src is 0, clears the memory
127template<typename T>
128inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
129
130// clears the memory
131template<typename T>
132inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
133
134// for symmetry
135template<typename T>
136inline void sfree (T *ptr, int n = 1) throw ()
137{ 372{
138 g_slice_free1 (n * sizeof (T), (void *)ptr); 373 void *operator new (size_t s, void *p)
139} 374 {
375 return p;
376 }
377
378 void *operator new (size_t s)
379 {
380 return salloc<char> (s);
381 }
382
383 void *operator new[] (size_t s)
384 {
385 return salloc<char> (s);
386 }
387
388 void operator delete (void *p, size_t s)
389 {
390 sfree ((char *)p, s);
391 }
392
393 void operator delete[] (void *p, size_t s)
394 {
395 sfree ((char *)p, s);
396 }
397};
140 398
141// a STL-compatible allocator that uses g_slice 399// a STL-compatible allocator that uses g_slice
142// boy, this is verbose 400// boy, this is verbose
143template<typename Tp> 401template<typename Tp>
144struct slice_allocator 402struct slice_allocator
149 typedef const Tp *const_pointer; 407 typedef const Tp *const_pointer;
150 typedef Tp &reference; 408 typedef Tp &reference;
151 typedef const Tp &const_reference; 409 typedef const Tp &const_reference;
152 typedef Tp value_type; 410 typedef Tp value_type;
153 411
154 template <class U> 412 template <class U>
155 struct rebind 413 struct rebind
156 { 414 {
157 typedef slice_allocator<U> other; 415 typedef slice_allocator<U> other;
158 }; 416 };
159 417
160 slice_allocator () throw () { } 418 slice_allocator () throw () { }
161 slice_allocator (const slice_allocator &o) throw () { } 419 slice_allocator (const slice_allocator &) throw () { }
162 template<typename Tp2> 420 template<typename Tp2>
163 slice_allocator (const slice_allocator<Tp2> &) throw () { } 421 slice_allocator (const slice_allocator<Tp2> &) throw () { }
164 422
165 ~slice_allocator () { } 423 ~slice_allocator () { }
166 424
175 void deallocate (pointer p, size_type n) 433 void deallocate (pointer p, size_type n)
176 { 434 {
177 sfree<Tp> (p, n); 435 sfree<Tp> (p, n);
178 } 436 }
179 437
180 size_type max_size ()const throw () 438 size_type max_size () const throw ()
181 { 439 {
182 return size_t (-1) / sizeof (Tp); 440 return size_t (-1) / sizeof (Tp);
183 } 441 }
184 442
185 void construct (pointer p, const Tp &val) 443 void construct (pointer p, const Tp &val)
191 { 449 {
192 p->~Tp (); 450 p->~Tp ();
193 } 451 }
194}; 452};
195 453
196// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 454// basically a memory area, but refcounted
197// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 455struct refcnt_buf
198// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
199struct tausworthe_random_generator
200{ 456{
201 // generator 457 char *data;
202 uint32_t state [4];
203 458
204 void operator =(const tausworthe_random_generator &src) 459 refcnt_buf (size_t size = 0);
205 { 460 refcnt_buf (void *data, size_t size);
206 state [0] = src.state [0];
207 state [1] = src.state [1];
208 state [2] = src.state [2];
209 state [3] = src.state [3];
210 }
211 461
212 void seed (uint32_t seed); 462 refcnt_buf (const refcnt_buf &src)
213 uint32_t next ();
214
215 // uniform distribution
216 uint32_t operator ()(uint32_t r_max)
217 { 463 {
218 return is_constant (r_max) 464 data = src.data;
219 ? this->next () % r_max 465 inc ();
220 : get_range (r_max);
221 } 466 }
222 467
223 // return a number within (min .. max) 468 ~refcnt_buf ();
224 int operator () (int r_min, int r_max)
225 {
226 return is_constant (r_min) && is_constant (r_max)
227 ? r_min + (*this) (max (r_max - r_min + 1, 1))
228 : get_range (r_min, r_max);
229 }
230 469
231 double operator ()() 470 refcnt_buf &operator =(const refcnt_buf &src);
471
472 operator char *()
232 { 473 {
233 return this->next () / (double)0xFFFFFFFFU; 474 return data;
475 }
476
477 size_t size () const
478 {
479 return _size ();
234 } 480 }
235 481
236protected: 482protected:
237 uint32_t get_range (uint32_t r_max); 483 enum {
238 int get_range (int r_min, int r_max); 484 overhead = sizeof (uint32_t) * 2
239}; 485 };
240 486
241typedef tausworthe_random_generator rand_gen; 487 uint32_t &_size () const
488 {
489 return ((unsigned int *)data)[-2];
490 }
242 491
243extern rand_gen rndm; 492 uint32_t &_refcnt () const
493 {
494 return ((unsigned int *)data)[-1];
495 }
496
497 void _alloc (uint32_t size)
498 {
499 data = ((char *)salloc<char> (size + overhead)) + overhead;
500 _size () = size;
501 _refcnt () = 1;
502 }
503
504 void _dealloc ();
505
506 void inc ()
507 {
508 ++_refcnt ();
509 }
510
511 void dec ()
512 {
513 if (!--_refcnt ())
514 _dealloc ();
515 }
516};
517
518INTERFACE_CLASS (attachable)
519struct refcnt_base
520{
521 typedef int refcnt_t;
522 mutable refcnt_t ACC (RW, refcnt);
523
524 MTH void refcnt_inc () const { ++refcnt; }
525 MTH void refcnt_dec () const { --refcnt; }
526
527 refcnt_base () : refcnt (0) { }
528};
529
530// to avoid branches with more advanced compilers
531extern refcnt_base::refcnt_t refcnt_dummy;
244 532
245template<class T> 533template<class T>
246struct refptr 534struct refptr
247{ 535{
536 // p if not null
537 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
538
539 void refcnt_dec ()
540 {
541 if (!is_constant (p))
542 --*refcnt_ref ();
543 else if (p)
544 --p->refcnt;
545 }
546
547 void refcnt_inc ()
548 {
549 if (!is_constant (p))
550 ++*refcnt_ref ();
551 else if (p)
552 ++p->refcnt;
553 }
554
248 T *p; 555 T *p;
249 556
250 refptr () : p(0) { } 557 refptr () : p(0) { }
251 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 558 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
252 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 559 refptr (T *p) : p(p) { refcnt_inc (); }
253 ~refptr () { if (p) p->refcnt_dec (); } 560 ~refptr () { refcnt_dec (); }
254 561
255 const refptr<T> &operator =(T *o) 562 const refptr<T> &operator =(T *o)
256 { 563 {
564 // if decrementing ever destroys we need to reverse the order here
257 if (p) p->refcnt_dec (); 565 refcnt_dec ();
258 p = o; 566 p = o;
259 if (p) p->refcnt_inc (); 567 refcnt_inc ();
260
261 return *this; 568 return *this;
262 } 569 }
263 570
264 const refptr<T> &operator =(const refptr<T> o) 571 const refptr<T> &operator =(const refptr<T> &o)
265 { 572 {
266 *this = o.p; 573 *this = o.p;
267 return *this; 574 return *this;
268 } 575 }
269 576
270 T &operator * () const { return *p; } 577 T &operator * () const { return *p; }
271 T *operator ->() const { return p; } 578 T *operator ->() const { return p; }
272 579
273 operator T *() const { return p; } 580 operator T *() const { return p; }
274}; 581};
275 582
276typedef refptr<maptile> maptile_ptr; 583typedef refptr<maptile> maptile_ptr;
277typedef refptr<object> object_ptr; 584typedef refptr<object> object_ptr;
278typedef refptr<archetype> arch_ptr; 585typedef refptr<archetype> arch_ptr;
279typedef refptr<client> client_ptr; 586typedef refptr<client> client_ptr;
280typedef refptr<player> player_ptr; 587typedef refptr<player> player_ptr;
588typedef refptr<region> region_ptr;
589
590#define STRHSH_NULL 2166136261
591
592static inline uint32_t
593strhsh (const char *s)
594{
595 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
596 // it is about twice as fast as the one-at-a-time one,
597 // with good distribution.
598 // FNV-1a is faster on many cpus because the multiplication
599 // runs concurrently with the looping logic.
600 // we modify the hash a bit to improve its distribution
601 uint32_t hash = STRHSH_NULL;
602
603 while (*s)
604 hash = (hash ^ *s++) * 16777619U;
605
606 return hash ^ (hash >> 16);
607}
608
609static inline uint32_t
610memhsh (const char *s, size_t len)
611{
612 uint32_t hash = STRHSH_NULL;
613
614 while (len--)
615 hash = (hash ^ *s++) * 16777619U;
616
617 return hash;
618}
281 619
282struct str_hash 620struct str_hash
283{ 621{
284 std::size_t operator ()(const char *s) const 622 std::size_t operator ()(const char *s) const
285 { 623 {
286 unsigned long hash = 0;
287
288 /* use the one-at-a-time hash function, which supposedly is
289 * better than the djb2-like one used by perl5.005, but
290 * certainly is better then the bug used here before.
291 * see http://burtleburtle.net/bob/hash/doobs.html
292 */
293 while (*s)
294 {
295 hash += *s++;
296 hash += hash << 10;
297 hash ^= hash >> 6;
298 }
299
300 hash += hash << 3;
301 hash ^= hash >> 11;
302 hash += hash << 15;
303
304 return hash; 624 return strhsh (s);
625 }
626
627 std::size_t operator ()(const shstr &s) const
628 {
629 return strhsh (s);
305 } 630 }
306}; 631};
307 632
308struct str_equal 633struct str_equal
309{ 634{
311 { 636 {
312 return !strcmp (a, b); 637 return !strcmp (a, b);
313 } 638 }
314}; 639};
315 640
641// Mostly the same as std::vector, but insert/erase can reorder
642// the elements, making append(=insert)/remove O(1) instead of O(n).
643//
644// NOTE: only some forms of erase are available
316template<class T> 645template<class T>
317struct unordered_vector : std::vector<T, slice_allocator<T> > 646struct unordered_vector : std::vector<T, slice_allocator<T> >
318{ 647{
319 typedef typename unordered_vector::iterator iterator; 648 typedef typename unordered_vector::iterator iterator;
320 649
330 { 659 {
331 erase ((unsigned int )(i - this->begin ())); 660 erase ((unsigned int )(i - this->begin ()));
332 } 661 }
333}; 662};
334 663
335template<class T, int T::* index> 664// This container blends advantages of linked lists
665// (efficiency) with vectors (random access) by
666// using an unordered vector and storing the vector
667// index inside the object.
668//
669// + memory-efficient on most 64 bit archs
670// + O(1) insert/remove
671// + free unique (but varying) id for inserted objects
672// + cache-friendly iteration
673// - only works for pointers to structs
674//
675// NOTE: only some forms of erase/insert are available
676typedef int object_vector_index;
677
678template<class T, object_vector_index T::*indexmember>
336struct object_vector : std::vector<T *, slice_allocator<T *> > 679struct object_vector : std::vector<T *, slice_allocator<T *> >
337{ 680{
681 typedef typename object_vector::iterator iterator;
682
683 bool contains (const T *obj) const
684 {
685 return obj->*indexmember;
686 }
687
688 iterator find (const T *obj)
689 {
690 return obj->*indexmember
691 ? this->begin () + obj->*indexmember - 1
692 : this->end ();
693 }
694
695 void push_back (T *obj)
696 {
697 std::vector<T *, slice_allocator<T *> >::push_back (obj);
698 obj->*indexmember = this->size ();
699 }
700
338 void insert (T *obj) 701 void insert (T *obj)
339 { 702 {
340 assert (!(obj->*index));
341 push_back (obj); 703 push_back (obj);
342 obj->*index = this->size ();
343 } 704 }
344 705
345 void insert (T &obj) 706 void insert (T &obj)
346 { 707 {
347 insert (&obj); 708 insert (&obj);
348 } 709 }
349 710
350 void erase (T *obj) 711 void erase (T *obj)
351 { 712 {
352 assert (obj->*index); 713 object_vector_index pos = obj->*indexmember;
353 int pos = obj->*index;
354 obj->*index = 0; 714 obj->*indexmember = 0;
355 715
356 if (pos < this->size ()) 716 if (pos < this->size ())
357 { 717 {
358 (*this)[pos - 1] = (*this)[this->size () - 1]; 718 (*this)[pos - 1] = (*this)[this->size () - 1];
359 (*this)[pos - 1]->*index = pos; 719 (*this)[pos - 1]->*indexmember = pos;
360 } 720 }
361 721
362 this->pop_back (); 722 this->pop_back ();
363 } 723 }
364 724
365 void erase (T &obj) 725 void erase (T &obj)
366 { 726 {
367 errase (&obj); 727 erase (&obj);
368 } 728 }
369}; 729};
730
731/////////////////////////////////////////////////////////////////////////////
732
733// something like a vector or stack, but without
734// out of bounds checking
735template<typename T>
736struct fixed_stack
737{
738 T *data;
739 int size;
740 int max;
741
742 fixed_stack ()
743 : size (0), data (0)
744 {
745 }
746
747 fixed_stack (int max)
748 : size (0), max (max)
749 {
750 data = salloc<T> (max);
751 }
752
753 void reset (int new_max)
754 {
755 sfree (data, max);
756 size = 0;
757 max = new_max;
758 data = salloc<T> (max);
759 }
760
761 void free ()
762 {
763 sfree (data, max);
764 data = 0;
765 }
766
767 ~fixed_stack ()
768 {
769 sfree (data, max);
770 }
771
772 T &operator[](int idx)
773 {
774 return data [idx];
775 }
776
777 void push (T v)
778 {
779 data [size++] = v;
780 }
781
782 T &pop ()
783 {
784 return data [--size];
785 }
786
787 T remove (int idx)
788 {
789 T v = data [idx];
790
791 data [idx] = data [--size];
792
793 return v;
794 }
795};
796
797/////////////////////////////////////////////////////////////////////////////
370 798
371// basically does what strncpy should do, but appends "..." to strings exceeding length 799// basically does what strncpy should do, but appends "..." to strings exceeding length
800// returns the number of bytes actually used (including \0)
372void assign (char *dst, const char *src, int maxlen); 801int assign (char *dst, const char *src, int maxsize);
373 802
374// type-safe version of assign 803// type-safe version of assign
375template<int N> 804template<int N>
376inline void assign (char (&dst)[N], const char *src) 805inline int assign (char (&dst)[N], const char *src)
377{ 806{
378 assign ((char *)&dst, src, N); 807 return assign ((char *)&dst, src, N);
379} 808}
380 809
381typedef double tstamp; 810typedef double tstamp;
382 811
383// return current time as timestampe 812// return current time as timestamp
384tstamp now (); 813tstamp now ();
385 814
386int similar_direction (int a, int b); 815int similar_direction (int a, int b);
387 816
817// like v?sprintf, but returns a "static" buffer
818char *vformat (const char *format, va_list ap);
819char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
820
821// safety-check player input which will become object->msg
822bool msg_is_safe (const char *msg);
823
824/////////////////////////////////////////////////////////////////////////////
825// threads, very very thin wrappers around pthreads
826
827struct thread
828{
829 pthread_t id;
830
831 void start (void *(*start_routine)(void *), void *arg = 0);
832
833 void cancel ()
834 {
835 pthread_cancel (id);
836 }
837
838 void *join ()
839 {
840 void *ret;
841
842 if (pthread_join (id, &ret))
843 cleanup ("pthread_join failed", 1);
844
845 return ret;
846 }
847};
848
849// note that mutexes are not classes
850typedef pthread_mutex_t smutex;
851
852#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
853 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
854#else
855 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
388#endif 856#endif
389 857
858#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
859#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
860#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
861
862typedef pthread_cond_t scond;
863
864#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
865#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
866#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
867#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
868
869#endif
870

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines