ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.83 by root, Tue Dec 30 07:24:16 2008 UTC vs.
Revision 1.125 by root, Wed Nov 14 22:52:13 2018 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Deliantra is free software: you can redistribute it and/or modify 6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * it under the terms of the GNU General Public License as published by 7 * the terms of the Affero GNU General Public License as published by the
8 * the Free Software Foundation, either version 3 of the License, or 8 * Free Software Foundation, either version 3 of the License, or (at your
9 * (at your option) any later version. 9 * option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the Affero GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
18 * 19 *
19 * The authors can be reached via e-mail to <support@deliantra.net> 20 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 21 */
21 22
22#ifndef UTIL_H__ 23#ifndef UTIL_H__
23#define UTIL_H__ 24#define UTIL_H__
25
26#include <compiler.h>
24 27
25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
29#if __GNUC__ >= 3
30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33#else
34# define is_constant(c) 0
35# define expect(expr,value) (expr)
36# define prefetch(addr,rw,locality)
37#endif
38
39#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40# define decltype(x) typeof(x)
41#endif
42
43// put into ifs if you are very sure that the expression
44// is mostly true or mosty false. note that these return
45// booleans, not the expression.
46#define expect_false(expr) expect ((expr) != 0, 0)
47#define expect_true(expr) expect ((expr) != 0, 1)
48 31
49#include <pthread.h> 32#include <pthread.h>
50 33
51#include <cstddef> 34#include <cstddef>
52#include <cmath> 35#include <cmath>
72#endif 55#endif
73 56
74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75#define auto(var,expr) decltype(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
76 59
60#if cplusplus_does_not_suck /* still sucks in codesize with gcc 6, although local types work now */
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
77// very ugly macro that basically declares and initialises a variable 71// very ugly macro that basically declares and initialises a variable
78// that is in scope for the next statement only 72// that is in scope for the next statement only
79// works only for stuff that can be assigned 0 and converts to false 73// works only for stuff that can be assigned 0 and converts to false
80// (note: works great for pointers) 74// (note: works great for pointers)
81// most ugly macro I ever wrote 75// most ugly macro I ever wrote
92void cleanup (const char *cause, bool make_core = false); 86void cleanup (const char *cause, bool make_core = false);
93void fork_abort (const char *msg); 87void fork_abort (const char *msg);
94 88
95// rationale for using (U) not (T) is to reduce signed/unsigned issues, 89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
96// as a is often a constant while b is the variable. it is still a bug, though. 90// as a is often a constant while b is the variable. it is still a bug, though.
97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 91template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 92template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100 94
101template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); } 95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
102template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); } 96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
103template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); } 97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
110// sign returns -1 or +1 104// sign returns -1 or +1
111template<typename T> 105template<typename T>
112static inline T sign (T v) { return v < 0 ? -1 : +1; } 106static inline T sign (T v) { return v < 0 ? -1 : +1; }
113// relies on 2c representation 107// relies on 2c representation
114template<> 108template<>
115inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); } 109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
116 114
117// sign0 returns -1, 0 or +1 115// sign0 returns -1, 0 or +1
118template<typename T> 116template<typename T>
119static inline T sign0 (T v) { return v ? sign (v) : 0; } 117static inline T sign0 (T v) { return v ? sign (v) : 0; }
120 118
119//clashes with C++0x
120template<typename T, typename U>
121static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123// div* only work correctly for div > 0
121// div, with correct rounding (< 0.5 downwards, >=0.5 upwards) 124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; } 125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129
130template<> inline float div (float val, float div) { return val / div; }
131template<> inline double div (double val, double div) { return val / div; }
132
123// div, round-up 133// div, round-up
124template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; } 134template<typename T> static inline T div_ru (T val, T div)
135{
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137}
125// div, round-down 138// div, round-down
126template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; } 139template<typename T> static inline T div_rd (T val, T div)
140{
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142}
127 143
144// lerp* only work correctly for min_in < max_in
145// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
128template<typename T> 146template<typename T>
129static inline T 147static inline T
130lerp (T val, T min_in, T max_in, T min_out, T max_out) 148lerp (T val, T min_in, T max_in, T min_out, T max_out)
131{ 149{
132 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in); 150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
191 int32_t d = b - a; 209 int32_t d = b - a;
192 d &= d >> 31; 210 d &= d >> 31;
193 return b - d; 211 return b - d;
194} 212}
195 213
196// this is much faster than crossfires original algorithm 214// this is much faster than crossfire's original algorithm
197// on modern cpus 215// on modern cpus
198inline int 216inline int
199isqrt (int n) 217isqrt (int n)
200{ 218{
201 return (int)sqrtf ((float)n); 219 return (int)sqrtf ((float)n);
220}
221
222// this is kind of like the ^^ operator, if it would exist, without sequence point.
223// more handy than it looks like, due to the implicit !! done on its arguments
224inline bool
225logical_xor (bool a, bool b)
226{
227 return a != b;
228}
229
230inline bool
231logical_implies (bool a, bool b)
232{
233 return a <= b;
202} 234}
203 235
204// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 236// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
205#if 0 237#if 0
206// and has a max. error of 6 in the range -100..+100. 238// and has a max. error of 6 in the range -100..+100.
207#else 239#else
208// and has a max. error of 9 in the range -100..+100. 240// and has a max. error of 9 in the range -100..+100.
209#endif 241#endif
210inline int 242inline int
211idistance (int dx, int dy) 243idistance (int dx, int dy)
212{ 244{
213 unsigned int dx_ = abs (dx); 245 unsigned int dx_ = abs (dx);
214 unsigned int dy_ = abs (dy); 246 unsigned int dy_ = abs (dy);
215 247
216#if 0 248#if 0
217 return dx_ > dy_ 249 return dx_ > dy_
220#else 252#else
221 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 253 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
222#endif 254#endif
223} 255}
224 256
257// can be substantially faster than floor, if your value range allows for it
258template<typename T>
259inline T
260fastfloor (T x)
261{
262 return std::floor (x);
263}
264
265inline float
266fastfloor (float x)
267{
268 return sint32(x) - (x < 0);
269}
270
271inline double
272fastfloor (double x)
273{
274 return sint64(x) - (x < 0);
275}
276
225/* 277/*
226 * absdir(int): Returns a number between 1 and 8, which represent 278 * absdir(int): Returns a number between 1 and 8, which represent
227 * the "absolute" direction of a number (it actually takes care of 279 * the "absolute" direction of a number (it actually takes care of
228 * "overflow" in previous calculations of a direction). 280 * "overflow" in previous calculations of a direction).
229 */ 281 */
231absdir (int d) 283absdir (int d)
232{ 284{
233 return ((d - 1) & 7) + 1; 285 return ((d - 1) & 7) + 1;
234} 286}
235 287
288// avoid ctz name because netbsd or freebsd spams it's namespace with it
289#if GCC_VERSION(3,4)
290static inline int least_significant_bit (uint32_t x)
291{
292 return __builtin_ctz (x);
293}
294#else
295int least_significant_bit (uint32_t x);
296#endif
297
298#define for_all_bits_sparse_32(mask, idxvar) \
299 for (uint32_t idxvar, mask_ = mask; \
300 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
301
236extern ssize_t slice_alloc; // statistics 302extern ssize_t slice_alloc; // statistics
237 303
238void *salloc_ (int n) throw (std::bad_alloc); 304void *salloc_ (int n);
239void *salloc_ (int n, void *src) throw (std::bad_alloc); 305void *salloc_ (int n, void *src);
240 306
241// strictly the same as g_slice_alloc, but never returns 0 307// strictly the same as g_slice_alloc, but never returns 0
242template<typename T> 308template<typename T>
243inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); } 309inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
244 310
245// also copies src into the new area, like "memdup" 311// also copies src into the new area, like "memdup"
246// if src is 0, clears the memory 312// if src is 0, clears the memory
247template<typename T> 313template<typename T>
248inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); } 314inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
249 315
250// clears the memory 316// clears the memory
251template<typename T> 317template<typename T>
252inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); } 318inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
253 319
254// for symmetry 320// for symmetry
255template<typename T> 321template<typename T>
256inline void sfree (T *ptr, int n = 1) throw () 322inline void sfree (T *ptr, int n = 1) noexcept
257{ 323{
258 if (expect_true (ptr)) 324 if (expect_true (ptr))
259 { 325 {
260 slice_alloc -= n * sizeof (T); 326 slice_alloc -= n * sizeof (T);
261 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T)); 327 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
262 g_slice_free1 (n * sizeof (T), (void *)ptr); 328 g_slice_free1 (n * sizeof (T), (void *)ptr);
263 assert (slice_alloc >= 0);//D
264 } 329 }
265} 330}
266 331
267// nulls the pointer 332// nulls the pointer
268template<typename T> 333template<typename T>
269inline void sfree0 (T *&ptr, int n = 1) throw () 334inline void sfree0 (T *&ptr, int n = 1) noexcept
270{ 335{
271 sfree<T> (ptr, n); 336 sfree<T> (ptr, n);
272 ptr = 0; 337 ptr = 0;
273} 338}
274 339
342 typedef const Tp *const_pointer; 407 typedef const Tp *const_pointer;
343 typedef Tp &reference; 408 typedef Tp &reference;
344 typedef const Tp &const_reference; 409 typedef const Tp &const_reference;
345 typedef Tp value_type; 410 typedef Tp value_type;
346 411
347 template <class U> 412 template <class U>
348 struct rebind 413 struct rebind
349 { 414 {
350 typedef slice_allocator<U> other; 415 typedef slice_allocator<U> other;
351 }; 416 };
352 417
353 slice_allocator () throw () { } 418 slice_allocator () noexcept { }
354 slice_allocator (const slice_allocator &) throw () { } 419 slice_allocator (const slice_allocator &) noexcept { }
355 template<typename Tp2> 420 template<typename Tp2>
356 slice_allocator (const slice_allocator<Tp2> &) throw () { } 421 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
357 422
358 ~slice_allocator () { } 423 ~slice_allocator () { }
359 424
360 pointer address (reference x) const { return &x; } 425 pointer address (reference x) const { return &x; }
361 const_pointer address (const_reference x) const { return &x; } 426 const_pointer address (const_reference x) const { return &x; }
368 void deallocate (pointer p, size_type n) 433 void deallocate (pointer p, size_type n)
369 { 434 {
370 sfree<Tp> (p, n); 435 sfree<Tp> (p, n);
371 } 436 }
372 437
373 size_type max_size () const throw () 438 size_type max_size () const noexcept
374 { 439 {
375 return size_t (-1) / sizeof (Tp); 440 return size_t (-1) / sizeof (Tp);
376 } 441 }
377 442
378 void construct (pointer p, const Tp &val) 443 void construct (pointer p, const Tp &val)
384 { 449 {
385 p->~Tp (); 450 p->~Tp ();
386 } 451 }
387}; 452};
388 453
389// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 454// basically a memory area, but refcounted
390// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 455struct refcnt_buf
391// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
392struct tausworthe_random_generator
393{ 456{
394 uint32_t state [4]; 457 char *data;
395 458
396 void operator =(const tausworthe_random_generator &src) 459 refcnt_buf (size_t size = 0);
397 { 460 refcnt_buf (void *data, size_t size);
398 state [0] = src.state [0];
399 state [1] = src.state [1];
400 state [2] = src.state [2];
401 state [3] = src.state [3];
402 }
403 461
404 void seed (uint32_t seed); 462 refcnt_buf (const refcnt_buf &src)
405 uint32_t next ();
406};
407
408// Xorshift RNGs, George Marsaglia
409// http://www.jstatsoft.org/v08/i14/paper
410// this one is about 40% faster than the tausworthe one above (i.e. not much),
411// despite the inlining, and has the issue of only creating 2**32-1 numbers.
412struct xorshift_random_generator
413{
414 uint32_t x, y;
415
416 void operator =(const xorshift_random_generator &src)
417 { 463 {
418 x = src.x; 464 data = src.data;
419 y = src.y; 465 inc ();
420 } 466 }
421 467
422 void seed (uint32_t seed) 468 ~refcnt_buf ();
423 {
424 x = seed;
425 y = seed * 69069U;
426 }
427 469
428 uint32_t next () 470 refcnt_buf &operator =(const refcnt_buf &src);
471
472 operator char *()
429 { 473 {
430 uint32_t t = x ^ (x << 10);
431 x = y;
432 y = y ^ (y >> 13) ^ t ^ (t >> 10);
433 return y; 474 return data;
434 } 475 }
435};
436 476
437template<class generator> 477 size_t size () const
438struct random_number_generator : generator
439{
440 // uniform distribution, 0 .. max (0, num - 1)
441 uint32_t operator ()(uint32_t num)
442 { 478 {
443 return !is_constant (num) ? get_range (num) // non-constant 479 return _size ();
444 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
445 : this->next () & (num - 1); // constant, power-of-two
446 }
447
448 // return a number within (min .. max)
449 int operator () (int r_min, int r_max)
450 {
451 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
452 ? r_min + operator ()(r_max - r_min + 1)
453 : get_range (r_min, r_max);
454 }
455
456 double operator ()()
457 {
458 return this->next () / (double)0xFFFFFFFFU;
459 } 480 }
460 481
461protected: 482protected:
462 uint32_t get_range (uint32_t r_max); 483 enum {
463 int get_range (int r_min, int r_max); 484 overhead = sizeof (uint32_t) * 2
464}; 485 };
465 486
466typedef random_number_generator<tausworthe_random_generator> rand_gen; 487 uint32_t &_size () const
488 {
489 return ((unsigned int *)data)[-2];
490 }
467 491
468extern rand_gen rndm, rmg_rndm; 492 uint32_t &_refcnt () const
493 {
494 return ((unsigned int *)data)[-1];
495 }
496
497 void _alloc (uint32_t size)
498 {
499 data = ((char *)salloc<char> (size + overhead)) + overhead;
500 _size () = size;
501 _refcnt () = 1;
502 }
503
504 void _dealloc ();
505
506 void inc ()
507 {
508 ++_refcnt ();
509 }
510
511 void dec ()
512 {
513 if (!--_refcnt ())
514 _dealloc ();
515 }
516};
469 517
470INTERFACE_CLASS (attachable) 518INTERFACE_CLASS (attachable)
471struct refcnt_base 519struct refcnt_base
472{ 520{
473 typedef int refcnt_t; 521 typedef int refcnt_t;
535typedef refptr<maptile> maptile_ptr; 583typedef refptr<maptile> maptile_ptr;
536typedef refptr<object> object_ptr; 584typedef refptr<object> object_ptr;
537typedef refptr<archetype> arch_ptr; 585typedef refptr<archetype> arch_ptr;
538typedef refptr<client> client_ptr; 586typedef refptr<client> client_ptr;
539typedef refptr<player> player_ptr; 587typedef refptr<player> player_ptr;
588typedef refptr<region> region_ptr;
589
590#define STRHSH_NULL 2166136261
591
592static inline uint32_t
593strhsh (const char *s)
594{
595 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
596 // it is about twice as fast as the one-at-a-time one,
597 // with good distribution.
598 // FNV-1a is faster on many cpus because the multiplication
599 // runs concurrently with the looping logic.
600 // we modify the hash a bit to improve its distribution
601 uint32_t hash = STRHSH_NULL;
602
603 while (*s)
604 hash = (hash ^ *s++) * 16777619U;
605
606 return hash ^ (hash >> 16);
607}
608
609static inline uint32_t
610memhsh (const char *s, size_t len)
611{
612 uint32_t hash = STRHSH_NULL;
613
614 while (len--)
615 hash = (hash ^ *s++) * 16777619U;
616
617 return hash;
618}
540 619
541struct str_hash 620struct str_hash
542{ 621{
543 std::size_t operator ()(const char *s) const 622 std::size_t operator ()(const char *s) const
544 { 623 {
545 unsigned long hash = 0;
546
547 /* use the one-at-a-time hash function, which supposedly is
548 * better than the djb2-like one used by perl5.005, but
549 * certainly is better then the bug used here before.
550 * see http://burtleburtle.net/bob/hash/doobs.html
551 */
552 while (*s)
553 {
554 hash += *s++;
555 hash += hash << 10;
556 hash ^= hash >> 6;
557 }
558
559 hash += hash << 3;
560 hash ^= hash >> 11;
561 hash += hash << 15;
562
563 return hash; 624 return strhsh (s);
625 }
626
627 std::size_t operator ()(const shstr &s) const
628 {
629 return strhsh (s);
564 } 630 }
565}; 631};
566 632
567struct str_equal 633struct str_equal
568{ 634{
595 } 661 }
596}; 662};
597 663
598// This container blends advantages of linked lists 664// This container blends advantages of linked lists
599// (efficiency) with vectors (random access) by 665// (efficiency) with vectors (random access) by
600// by using an unordered vector and storing the vector 666// using an unordered vector and storing the vector
601// index inside the object. 667// index inside the object.
602// 668//
603// + memory-efficient on most 64 bit archs 669// + memory-efficient on most 64 bit archs
604// + O(1) insert/remove 670// + O(1) insert/remove
605// + free unique (but varying) id for inserted objects 671// + free unique (but varying) id for inserted objects
642 insert (&obj); 708 insert (&obj);
643 } 709 }
644 710
645 void erase (T *obj) 711 void erase (T *obj)
646 { 712 {
647 unsigned int pos = obj->*indexmember; 713 object_vector_index pos = obj->*indexmember;
648 obj->*indexmember = 0; 714 obj->*indexmember = 0;
649 715
650 if (pos < this->size ()) 716 if (pos < this->size ())
651 { 717 {
652 (*this)[pos - 1] = (*this)[this->size () - 1]; 718 (*this)[pos - 1] = (*this)[this->size () - 1];
660 { 726 {
661 erase (&obj); 727 erase (&obj);
662 } 728 }
663}; 729};
664 730
731/////////////////////////////////////////////////////////////////////////////
732
733// something like a vector or stack, but without
734// out of bounds checking
735template<typename T>
736struct fixed_stack
737{
738 T *data;
739 int size;
740 int max;
741
742 fixed_stack ()
743 : size (0), data (0)
744 {
745 }
746
747 fixed_stack (int max)
748 : size (0), max (max)
749 {
750 data = salloc<T> (max);
751 }
752
753 void reset (int new_max)
754 {
755 sfree (data, max);
756 size = 0;
757 max = new_max;
758 data = salloc<T> (max);
759 }
760
761 void free ()
762 {
763 sfree (data, max);
764 data = 0;
765 }
766
767 ~fixed_stack ()
768 {
769 sfree (data, max);
770 }
771
772 T &operator[](int idx)
773 {
774 return data [idx];
775 }
776
777 void push (T v)
778 {
779 data [size++] = v;
780 }
781
782 T &pop ()
783 {
784 return data [--size];
785 }
786
787 T remove (int idx)
788 {
789 T v = data [idx];
790
791 data [idx] = data [--size];
792
793 return v;
794 }
795};
796
797/////////////////////////////////////////////////////////////////////////////
798
665// basically does what strncpy should do, but appends "..." to strings exceeding length 799// basically does what strncpy should do, but appends "..." to strings exceeding length
800// returns the number of bytes actually used (including \0)
666void assign (char *dst, const char *src, int maxlen); 801int assign (char *dst, const char *src, int maxsize);
667 802
668// type-safe version of assign 803// type-safe version of assign
669template<int N> 804template<int N>
670inline void assign (char (&dst)[N], const char *src) 805inline int assign (char (&dst)[N], const char *src)
671{ 806{
672 assign ((char *)&dst, src, N); 807 return assign ((char *)&dst, src, N);
673} 808}
674 809
675typedef double tstamp; 810typedef double tstamp;
676 811
677// return current time as timestamp 812// return current time as timestamp
678tstamp now (); 813tstamp now ();
679 814
680int similar_direction (int a, int b); 815int similar_direction (int a, int b);
681 816
682// like sprintf, but returns a "static" buffer 817// like v?sprintf, but returns a "static" buffer
683const char *format (const char *format, ...); 818char *vformat (const char *format, va_list ap);
819char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
820
821// safety-check player input which will become object->msg
822bool msg_is_safe (const char *msg);
684 823
685///////////////////////////////////////////////////////////////////////////// 824/////////////////////////////////////////////////////////////////////////////
686// threads, very very thin wrappers around pthreads 825// threads, very very thin wrappers around pthreads
687 826
688struct thread 827struct thread

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines