ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.13 by root, Thu Sep 14 00:07:15 2006 UTC vs.
Revision 1.68 by root, Tue Apr 15 03:16:02 2008 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
25#define DEBUG_SALLOC 0
26#define PREFER_MALLOC 1
27
4#if __GNUC__ >= 3 28#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 29# define is_constant(c) __builtin_constant_p (c)
30# define expect(expr,value) __builtin_expect ((expr),(value))
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
6#else 32#else
7# define is_constant(c) 0 33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
8#endif 36#endif
9 37
38#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
39# define decltype(x) typeof(x)
40#endif
41
42// put into ifs if you are very sure that the expression
43// is mostly true or mosty false. note that these return
44// booleans, not the expression.
45#define expect_false(expr) expect ((expr) != 0, 0)
46#define expect_true(expr) expect ((expr) != 0, 1)
47
48#include <pthread.h>
49
10#include <cstddef> 50#include <cstddef>
51#include <cmath>
52#include <new>
53#include <vector>
11 54
12#include <glib.h> 55#include <glib.h>
56
57#include <shstr.h>
58#include <traits.h>
59
60#if DEBUG_SALLOC
61# define g_slice_alloc0(s) debug_slice_alloc0(s)
62# define g_slice_alloc(s) debug_slice_alloc(s)
63# define g_slice_free1(s,p) debug_slice_free1(s,p)
64void *g_slice_alloc (unsigned long size);
65void *g_slice_alloc0 (unsigned long size);
66void g_slice_free1 (unsigned long size, void *ptr);
67#elif PREFER_MALLOC
68# define g_slice_alloc0(s) calloc (1, (s))
69# define g_slice_alloc(s) malloc ((s))
70# define g_slice_free1(s,p) free ((p))
71#endif
72
73// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
74#define auto(var,expr) decltype(expr) var = (expr)
75
76// very ugly macro that basicaly declares and initialises a variable
77// that is in scope for the next statement only
78// works only for stuff that can be assigned 0 and converts to false
79// (note: works great for pointers)
80// most ugly macro I ever wrote
81#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
82
83// in range including end
84#define IN_RANGE_INC(val,beg,end) \
85 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
86
87// in range excluding end
88#define IN_RANGE_EXC(val,beg,end) \
89 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
90
91void cleanup (const char *cause, bool make_core = false);
92void fork_abort (const char *msg);
93
94// rationale for using (U) not (T) is to reduce signed/unsigned issues,
95// as a is often a constant while b is the variable. it is still a bug, though.
96template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
97template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
98template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
99
100template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
101
102template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
103template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
104
105template<typename T>
106static inline T
107lerp (T val, T min_in, T max_in, T min_out, T max_out)
108{
109 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
110}
111
112// lots of stuff taken from FXT
113
114/* Rotate right. This is used in various places for checksumming */
115//TODO: that sucks, use a better checksum algo
116static inline uint32_t
117rotate_right (uint32_t c, uint32_t count = 1)
118{
119 return (c << (32 - count)) | (c >> count);
120}
121
122static inline uint32_t
123rotate_left (uint32_t c, uint32_t count = 1)
124{
125 return (c >> (32 - count)) | (c << count);
126}
127
128// Return abs(a-b)
129// Both a and b must not have the most significant bit set
130static inline uint32_t
131upos_abs_diff (uint32_t a, uint32_t b)
132{
133 long d1 = b - a;
134 long d2 = (d1 & (d1 >> 31)) << 1;
135
136 return d1 - d2; // == (b - d) - (a + d);
137}
138
139// Both a and b must not have the most significant bit set
140static inline uint32_t
141upos_min (uint32_t a, uint32_t b)
142{
143 int32_t d = b - a;
144 d &= d >> 31;
145 return a + d;
146}
147
148// Both a and b must not have the most significant bit set
149static inline uint32_t
150upos_max (uint32_t a, uint32_t b)
151{
152 int32_t d = b - a;
153 d &= d >> 31;
154 return b - d;
155}
156
157// this is much faster than crossfires original algorithm
158// on modern cpus
159inline int
160isqrt (int n)
161{
162 return (int)sqrtf ((float)n);
163}
164
165// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
166#if 0
167// and has a max. error of 6 in the range -100..+100.
168#else
169// and has a max. error of 9 in the range -100..+100.
170#endif
171inline int
172idistance (int dx, int dy)
173{
174 unsigned int dx_ = abs (dx);
175 unsigned int dy_ = abs (dy);
176
177#if 0
178 return dx_ > dy_
179 ? (dx_ * 61685 + dy_ * 26870) >> 16
180 : (dy_ * 61685 + dx_ * 26870) >> 16;
181#else
182 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
183#endif
184}
185
186/*
187 * absdir(int): Returns a number between 1 and 8, which represent
188 * the "absolute" direction of a number (it actually takes care of
189 * "overflow" in previous calculations of a direction).
190 */
191inline int
192absdir (int d)
193{
194 return ((d - 1) & 7) + 1;
195}
196
197extern ssize_t slice_alloc; // statistics
198
199void *salloc_ (int n) throw (std::bad_alloc);
200void *salloc_ (int n, void *src) throw (std::bad_alloc);
201
202// strictly the same as g_slice_alloc, but never returns 0
203template<typename T>
204inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
205
206// also copies src into the new area, like "memdup"
207// if src is 0, clears the memory
208template<typename T>
209inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
210
211// clears the memory
212template<typename T>
213inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
214
215// for symmetry
216template<typename T>
217inline void sfree (T *ptr, int n = 1) throw ()
218{
219 if (expect_true (ptr))
220 {
221 slice_alloc -= n * sizeof (T);
222 g_slice_free1 (n * sizeof (T), (void *)ptr);
223 assert (slice_alloc >= 0);//D
224 }
225}
13 226
14// makes dynamically allocated objects zero-initialised 227// makes dynamically allocated objects zero-initialised
15struct zero_initialised 228struct zero_initialised
16{ 229{
17 void *operator new (size_t s, void *p) 230 void *operator new (size_t s, void *p)
20 return p; 233 return p;
21 } 234 }
22 235
23 void *operator new (size_t s) 236 void *operator new (size_t s)
24 { 237 {
25 return g_slice_alloc0 (s); 238 return salloc0<char> (s);
26 } 239 }
27 240
28 void *operator new[] (size_t s) 241 void *operator new[] (size_t s)
29 { 242 {
30 return g_slice_alloc0 (s); 243 return salloc0<char> (s);
31 } 244 }
32 245
33 void operator delete (void *p, size_t s) 246 void operator delete (void *p, size_t s)
34 { 247 {
35 g_slice_free1 (s, p); 248 sfree ((char *)p, s);
36 } 249 }
37 250
38 void operator delete[] (void *p, size_t s) 251 void operator delete[] (void *p, size_t s)
39 { 252 {
40 g_slice_free1 (s, p); 253 sfree ((char *)p, s);
41 } 254 }
42}; 255};
43
44// strictly the same as g_slice_alloc, but never returns 0
45void *alloc (int s) throw (std::bad_alloc);
46// for symmetry
47inline void dealloc (void *p, int s) throw ()
48{
49 g_slice_free1 (s, p);
50}
51 256
52// a STL-compatible allocator that uses g_slice 257// a STL-compatible allocator that uses g_slice
53// boy, this is verbose 258// boy, this is verbose
54template<typename Tp> 259template<typename Tp>
55struct slice_allocator 260struct slice_allocator
67 { 272 {
68 typedef slice_allocator<U> other; 273 typedef slice_allocator<U> other;
69 }; 274 };
70 275
71 slice_allocator () throw () { } 276 slice_allocator () throw () { }
72 slice_allocator (const slice_allocator &o) throw () { } 277 slice_allocator (const slice_allocator &) throw () { }
73 template<typename Tp2> 278 template<typename Tp2>
74 slice_allocator (const slice_allocator<Tp2> &) throw () { } 279 slice_allocator (const slice_allocator<Tp2> &) throw () { }
75 280
76 ~slice_allocator () { } 281 ~slice_allocator () { }
77 282
78 pointer address (reference x) const { return &x; } 283 pointer address (reference x) const { return &x; }
79 const_pointer address (const_reference x) const { return &x; } 284 const_pointer address (const_reference x) const { return &x; }
80 285
81 pointer allocate (size_type n, const_pointer = 0) 286 pointer allocate (size_type n, const_pointer = 0)
82 { 287 {
83 return static_cast<pointer>(alloc (n * sizeof (Tp))); 288 return salloc<Tp> (n);
84 } 289 }
85 290
86 void deallocate (pointer p, size_type n) 291 void deallocate (pointer p, size_type n)
87 { 292 {
88 dealloc (static_cast<void *>(p), n * sizeof (Tp)); 293 sfree<Tp> (p, n);
89 } 294 }
90 295
91 size_type max_size ()const throw () 296 size_type max_size () const throw ()
92 { 297 {
93 return size_t (-1) / sizeof (Tp); 298 return size_t (-1) / sizeof (Tp);
94 } 299 }
95 300
96 void construct (pointer p, const Tp &val) 301 void construct (pointer p, const Tp &val)
102 { 307 {
103 p->~Tp (); 308 p->~Tp ();
104 } 309 }
105}; 310};
106 311
312// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
313// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
314// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
315struct tausworthe_random_generator
316{
317 // generator
318 uint32_t state [4];
319
320 void operator =(const tausworthe_random_generator &src)
321 {
322 state [0] = src.state [0];
323 state [1] = src.state [1];
324 state [2] = src.state [2];
325 state [3] = src.state [3];
326 }
327
328 void seed (uint32_t seed);
329 uint32_t next ();
330
331 // uniform distribution
332 uint32_t operator ()(uint32_t num)
333 {
334 return is_constant (num)
335 ? (next () * (uint64_t)num) >> 32U
336 : get_range (num);
337 }
338
339 // return a number within (min .. max)
340 int operator () (int r_min, int r_max)
341 {
342 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
343 ? r_min + operator ()(r_max - r_min + 1)
344 : get_range (r_min, r_max);
345 }
346
347 double operator ()()
348 {
349 return this->next () / (double)0xFFFFFFFFU;
350 }
351
352protected:
353 uint32_t get_range (uint32_t r_max);
354 int get_range (int r_min, int r_max);
355};
356
357typedef tausworthe_random_generator rand_gen;
358
359extern rand_gen rndm;
360
361INTERFACE_CLASS (attachable)
107struct refcounted 362struct refcnt_base
108{ 363{
109 mutable int refcnt; 364 typedef int refcnt_t;
110 refcounted () : refcnt (0) { } 365 mutable refcnt_t ACC (RW, refcnt);
366
111 void refcnt_inc () { ++refcnt; } 367 MTH void refcnt_inc () const { ++refcnt; }
112 void refcnt_dec () { --refcnt; 368 MTH void refcnt_dec () const { --refcnt; }
113 if (refcnt < 0)abort();}//D 369
370 refcnt_base () : refcnt (0) { }
114}; 371};
372
373// to avoid branches with more advanced compilers
374extern refcnt_base::refcnt_t refcnt_dummy;
115 375
116template<class T> 376template<class T>
117struct refptr 377struct refptr
118{ 378{
379 // p if not null
380 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
381
382 void refcnt_dec ()
383 {
384 if (!is_constant (p))
385 --*refcnt_ref ();
386 else if (p)
387 --p->refcnt;
388 }
389
390 void refcnt_inc ()
391 {
392 if (!is_constant (p))
393 ++*refcnt_ref ();
394 else if (p)
395 ++p->refcnt;
396 }
397
119 T *p; 398 T *p;
120 399
121 refptr () : p(0) { } 400 refptr () : p(0) { }
122 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 401 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
123 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 402 refptr (T *p) : p(p) { refcnt_inc (); }
124 ~refptr () { if (p) p->refcnt_dec (); } 403 ~refptr () { refcnt_dec (); }
125 404
126 const refptr<T> &operator =(T *o) 405 const refptr<T> &operator =(T *o)
127 { 406 {
407 // if decrementing ever destroys we need to reverse the order here
128 if (p) p->refcnt_dec (); 408 refcnt_dec ();
129 p = o; 409 p = o;
130 if (p) p->refcnt_inc (); 410 refcnt_inc ();
131
132 return *this; 411 return *this;
133 } 412 }
134 413
135 const refptr<T> &operator =(const refptr<T> o) 414 const refptr<T> &operator =(const refptr<T> &o)
136 { 415 {
137 *this = o.p; 416 *this = o.p;
138 return *this; 417 return *this;
139 } 418 }
140 419
141 T &operator * () const { return *p; } 420 T &operator * () const { return *p; }
142 T *operator ->() const { return p; } 421 T *operator ->() const { return p; }
143 422
144 operator T *() const { return p; } 423 operator T *() const { return p; }
145}; 424};
425
426typedef refptr<maptile> maptile_ptr;
427typedef refptr<object> object_ptr;
428typedef refptr<archetype> arch_ptr;
429typedef refptr<client> client_ptr;
430typedef refptr<player> player_ptr;
146 431
147struct str_hash 432struct str_hash
148{ 433{
149 std::size_t operator ()(const char *s) const 434 std::size_t operator ()(const char *s) const
150 { 435 {
176 { 461 {
177 return !strcmp (a, b); 462 return !strcmp (a, b);
178 } 463 }
179}; 464};
180 465
181#include <vector> 466// Mostly the same as std::vector, but insert/erase can reorder
182 467// the elements, making append(=insert)/remove O(1) instead of O(n).
468//
469// NOTE: only some forms of erase are available
183template<class obj> 470template<class T>
184struct unordered_vector : std::vector<obj, slice_allocator<obj> > 471struct unordered_vector : std::vector<T, slice_allocator<T> >
185{ 472{
186 typedef typename unordered_vector::iterator iterator; 473 typedef typename unordered_vector::iterator iterator;
187 474
188 void erase (unsigned int pos) 475 void erase (unsigned int pos)
189 { 476 {
197 { 484 {
198 erase ((unsigned int )(i - this->begin ())); 485 erase ((unsigned int )(i - this->begin ()));
199 } 486 }
200}; 487};
201 488
202template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 489// This container blends advantages of linked lists
203template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 490// (efficiency) with vectors (random access) by
204template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 491// by using an unordered vector and storing the vector
492// index inside the object.
493//
494// + memory-efficient on most 64 bit archs
495// + O(1) insert/remove
496// + free unique (but varying) id for inserted objects
497// + cache-friendly iteration
498// - only works for pointers to structs
499//
500// NOTE: only some forms of erase/insert are available
501typedef int object_vector_index;
205 502
206template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 503template<class T, object_vector_index T::*indexmember>
504struct object_vector : std::vector<T *, slice_allocator<T *> >
505{
506 typedef typename object_vector::iterator iterator;
507
508 bool contains (const T *obj) const
509 {
510 return obj->*indexmember;
511 }
512
513 iterator find (const T *obj)
514 {
515 return obj->*indexmember
516 ? this->begin () + obj->*indexmember - 1
517 : this->end ();
518 }
519
520 void push_back (T *obj)
521 {
522 std::vector<T *, slice_allocator<T *> >::push_back (obj);
523 obj->*indexmember = this->size ();
524 }
525
526 void insert (T *obj)
527 {
528 push_back (obj);
529 }
530
531 void insert (T &obj)
532 {
533 insert (&obj);
534 }
535
536 void erase (T *obj)
537 {
538 unsigned int pos = obj->*indexmember;
539 obj->*indexmember = 0;
540
541 if (pos < this->size ())
542 {
543 (*this)[pos - 1] = (*this)[this->size () - 1];
544 (*this)[pos - 1]->*indexmember = pos;
545 }
546
547 this->pop_back ();
548 }
549
550 void erase (T &obj)
551 {
552 erase (&obj);
553 }
554};
207 555
208// basically does what strncpy should do, but appends "..." to strings exceeding length 556// basically does what strncpy should do, but appends "..." to strings exceeding length
209void assign (char *dst, const char *src, int maxlen); 557void assign (char *dst, const char *src, int maxlen);
210 558
211// type-safe version of assign 559// type-safe version of assign
213inline void assign (char (&dst)[N], const char *src) 561inline void assign (char (&dst)[N], const char *src)
214{ 562{
215 assign ((char *)&dst, src, N); 563 assign ((char *)&dst, src, N);
216} 564}
217 565
566typedef double tstamp;
567
568// return current time as timestamp
569tstamp now ();
570
571int similar_direction (int a, int b);
572
573// like sprintf, but returns a "static" buffer
574const char *format (const char *format, ...);
575
576/////////////////////////////////////////////////////////////////////////////
577// threads, very very thin wrappers around pthreads
578
579struct thread
580{
581 pthread_t id;
582
583 void start (void *(*start_routine)(void *), void *arg = 0);
584
585 void cancel ()
586 {
587 pthread_cancel (id);
588 }
589
590 void *join ()
591 {
592 void *ret;
593
594 if (pthread_join (id, &ret))
595 cleanup ("pthread_join failed", 1);
596
597 return ret;
598 }
599};
600
601// note that mutexes are not classes
602typedef pthread_mutex_t smutex;
603
604#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
605 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
606#else
607 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
218#endif 608#endif
219 609
610#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
611#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
612#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
613
614typedef pthread_cond_t scond;
615
616#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
617#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
618#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
619#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
620
621#endif
622

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines