ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.13 by root, Thu Sep 14 00:07:15 2006 UTC vs.
Revision 1.70 by root, Sun Apr 20 05:24:55 2008 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
25#define DEBUG_POISON 0xaa // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
4#if __GNUC__ >= 3 29#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
6#else 33#else
7# define is_constant(c) 0 34# define is_constant(c) 0
35# define expect(expr,value) (expr)
36# define prefetch(addr,rw,locality)
8#endif 37#endif
9 38
39#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40# define decltype(x) typeof(x)
41#endif
42
43// put into ifs if you are very sure that the expression
44// is mostly true or mosty false. note that these return
45// booleans, not the expression.
46#define expect_false(expr) expect ((expr) != 0, 0)
47#define expect_true(expr) expect ((expr) != 0, 1)
48
49#include <pthread.h>
50
10#include <cstddef> 51#include <cstddef>
52#include <cmath>
53#include <new>
54#include <vector>
11 55
12#include <glib.h> 56#include <glib.h>
57
58#include <shstr.h>
59#include <traits.h>
60
61#if DEBUG_SALLOC
62# define g_slice_alloc0(s) debug_slice_alloc0(s)
63# define g_slice_alloc(s) debug_slice_alloc(s)
64# define g_slice_free1(s,p) debug_slice_free1(s,p)
65void *g_slice_alloc (unsigned long size);
66void *g_slice_alloc0 (unsigned long size);
67void g_slice_free1 (unsigned long size, void *ptr);
68#elif PREFER_MALLOC
69# define g_slice_alloc0(s) calloc (1, (s))
70# define g_slice_alloc(s) malloc ((s))
71# define g_slice_free1(s,p) free ((p))
72#endif
73
74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75#define auto(var,expr) decltype(expr) var = (expr)
76
77// very ugly macro that basicaly declares and initialises a variable
78// that is in scope for the next statement only
79// works only for stuff that can be assigned 0 and converts to false
80// (note: works great for pointers)
81// most ugly macro I ever wrote
82#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83
84// in range including end
85#define IN_RANGE_INC(val,beg,end) \
86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87
88// in range excluding end
89#define IN_RANGE_EXC(val,beg,end) \
90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91
92void cleanup (const char *cause, bool make_core = false);
93void fork_abort (const char *msg);
94
95// rationale for using (U) not (T) is to reduce signed/unsigned issues,
96// as a is often a constant while b is the variable. it is still a bug, though.
97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100
101template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
102
103template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
104template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
105
106template<typename T>
107static inline T
108lerp (T val, T min_in, T max_in, T min_out, T max_out)
109{
110 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
111}
112
113// lots of stuff taken from FXT
114
115/* Rotate right. This is used in various places for checksumming */
116//TODO: that sucks, use a better checksum algo
117static inline uint32_t
118rotate_right (uint32_t c, uint32_t count = 1)
119{
120 return (c << (32 - count)) | (c >> count);
121}
122
123static inline uint32_t
124rotate_left (uint32_t c, uint32_t count = 1)
125{
126 return (c >> (32 - count)) | (c << count);
127}
128
129// Return abs(a-b)
130// Both a and b must not have the most significant bit set
131static inline uint32_t
132upos_abs_diff (uint32_t a, uint32_t b)
133{
134 long d1 = b - a;
135 long d2 = (d1 & (d1 >> 31)) << 1;
136
137 return d1 - d2; // == (b - d) - (a + d);
138}
139
140// Both a and b must not have the most significant bit set
141static inline uint32_t
142upos_min (uint32_t a, uint32_t b)
143{
144 int32_t d = b - a;
145 d &= d >> 31;
146 return a + d;
147}
148
149// Both a and b must not have the most significant bit set
150static inline uint32_t
151upos_max (uint32_t a, uint32_t b)
152{
153 int32_t d = b - a;
154 d &= d >> 31;
155 return b - d;
156}
157
158// this is much faster than crossfires original algorithm
159// on modern cpus
160inline int
161isqrt (int n)
162{
163 return (int)sqrtf ((float)n);
164}
165
166// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
167#if 0
168// and has a max. error of 6 in the range -100..+100.
169#else
170// and has a max. error of 9 in the range -100..+100.
171#endif
172inline int
173idistance (int dx, int dy)
174{
175 unsigned int dx_ = abs (dx);
176 unsigned int dy_ = abs (dy);
177
178#if 0
179 return dx_ > dy_
180 ? (dx_ * 61685 + dy_ * 26870) >> 16
181 : (dy_ * 61685 + dx_ * 26870) >> 16;
182#else
183 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
184#endif
185}
186
187/*
188 * absdir(int): Returns a number between 1 and 8, which represent
189 * the "absolute" direction of a number (it actually takes care of
190 * "overflow" in previous calculations of a direction).
191 */
192inline int
193absdir (int d)
194{
195 return ((d - 1) & 7) + 1;
196}
197
198extern ssize_t slice_alloc; // statistics
199
200void *salloc_ (int n) throw (std::bad_alloc);
201void *salloc_ (int n, void *src) throw (std::bad_alloc);
202
203// strictly the same as g_slice_alloc, but never returns 0
204template<typename T>
205inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
206
207// also copies src into the new area, like "memdup"
208// if src is 0, clears the memory
209template<typename T>
210inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
211
212// clears the memory
213template<typename T>
214inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
215
216// for symmetry
217template<typename T>
218inline void sfree (T *ptr, int n = 1) throw ()
219{
220 if (expect_true (ptr))
221 {
222 slice_alloc -= n * sizeof (T);
223 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
224 g_slice_free1 (n * sizeof (T), (void *)ptr);
225 assert (slice_alloc >= 0);//D
226 }
227}
13 228
14// makes dynamically allocated objects zero-initialised 229// makes dynamically allocated objects zero-initialised
15struct zero_initialised 230struct zero_initialised
16{ 231{
17 void *operator new (size_t s, void *p) 232 void *operator new (size_t s, void *p)
20 return p; 235 return p;
21 } 236 }
22 237
23 void *operator new (size_t s) 238 void *operator new (size_t s)
24 { 239 {
25 return g_slice_alloc0 (s); 240 return salloc0<char> (s);
26 } 241 }
27 242
28 void *operator new[] (size_t s) 243 void *operator new[] (size_t s)
29 { 244 {
30 return g_slice_alloc0 (s); 245 return salloc0<char> (s);
31 } 246 }
32 247
33 void operator delete (void *p, size_t s) 248 void operator delete (void *p, size_t s)
34 { 249 {
35 g_slice_free1 (s, p); 250 sfree ((char *)p, s);
36 } 251 }
37 252
38 void operator delete[] (void *p, size_t s) 253 void operator delete[] (void *p, size_t s)
39 { 254 {
40 g_slice_free1 (s, p); 255 sfree ((char *)p, s);
41 } 256 }
42}; 257};
43
44// strictly the same as g_slice_alloc, but never returns 0
45void *alloc (int s) throw (std::bad_alloc);
46// for symmetry
47inline void dealloc (void *p, int s) throw ()
48{
49 g_slice_free1 (s, p);
50}
51 258
52// a STL-compatible allocator that uses g_slice 259// a STL-compatible allocator that uses g_slice
53// boy, this is verbose 260// boy, this is verbose
54template<typename Tp> 261template<typename Tp>
55struct slice_allocator 262struct slice_allocator
67 { 274 {
68 typedef slice_allocator<U> other; 275 typedef slice_allocator<U> other;
69 }; 276 };
70 277
71 slice_allocator () throw () { } 278 slice_allocator () throw () { }
72 slice_allocator (const slice_allocator &o) throw () { } 279 slice_allocator (const slice_allocator &) throw () { }
73 template<typename Tp2> 280 template<typename Tp2>
74 slice_allocator (const slice_allocator<Tp2> &) throw () { } 281 slice_allocator (const slice_allocator<Tp2> &) throw () { }
75 282
76 ~slice_allocator () { } 283 ~slice_allocator () { }
77 284
78 pointer address (reference x) const { return &x; } 285 pointer address (reference x) const { return &x; }
79 const_pointer address (const_reference x) const { return &x; } 286 const_pointer address (const_reference x) const { return &x; }
80 287
81 pointer allocate (size_type n, const_pointer = 0) 288 pointer allocate (size_type n, const_pointer = 0)
82 { 289 {
83 return static_cast<pointer>(alloc (n * sizeof (Tp))); 290 return salloc<Tp> (n);
84 } 291 }
85 292
86 void deallocate (pointer p, size_type n) 293 void deallocate (pointer p, size_type n)
87 { 294 {
88 dealloc (static_cast<void *>(p), n * sizeof (Tp)); 295 sfree<Tp> (p, n);
89 } 296 }
90 297
91 size_type max_size ()const throw () 298 size_type max_size () const throw ()
92 { 299 {
93 return size_t (-1) / sizeof (Tp); 300 return size_t (-1) / sizeof (Tp);
94 } 301 }
95 302
96 void construct (pointer p, const Tp &val) 303 void construct (pointer p, const Tp &val)
102 { 309 {
103 p->~Tp (); 310 p->~Tp ();
104 } 311 }
105}; 312};
106 313
314// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
315// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
316// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
317struct tausworthe_random_generator
318{
319 // generator
320 uint32_t state [4];
321
322 void operator =(const tausworthe_random_generator &src)
323 {
324 state [0] = src.state [0];
325 state [1] = src.state [1];
326 state [2] = src.state [2];
327 state [3] = src.state [3];
328 }
329
330 void seed (uint32_t seed);
331 uint32_t next ();
332
333 // uniform distribution
334 uint32_t operator ()(uint32_t num)
335 {
336 return is_constant (num)
337 ? (next () * (uint64_t)num) >> 32U
338 : get_range (num);
339 }
340
341 // return a number within (min .. max)
342 int operator () (int r_min, int r_max)
343 {
344 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
345 ? r_min + operator ()(r_max - r_min + 1)
346 : get_range (r_min, r_max);
347 }
348
349 double operator ()()
350 {
351 return this->next () / (double)0xFFFFFFFFU;
352 }
353
354protected:
355 uint32_t get_range (uint32_t r_max);
356 int get_range (int r_min, int r_max);
357};
358
359typedef tausworthe_random_generator rand_gen;
360
361extern rand_gen rndm;
362
363INTERFACE_CLASS (attachable)
107struct refcounted 364struct refcnt_base
108{ 365{
109 mutable int refcnt; 366 typedef int refcnt_t;
110 refcounted () : refcnt (0) { } 367 mutable refcnt_t ACC (RW, refcnt);
368
111 void refcnt_inc () { ++refcnt; } 369 MTH void refcnt_inc () const { ++refcnt; }
112 void refcnt_dec () { --refcnt; 370 MTH void refcnt_dec () const { --refcnt; }
113 if (refcnt < 0)abort();}//D 371
372 refcnt_base () : refcnt (0) { }
114}; 373};
374
375// to avoid branches with more advanced compilers
376extern refcnt_base::refcnt_t refcnt_dummy;
115 377
116template<class T> 378template<class T>
117struct refptr 379struct refptr
118{ 380{
381 // p if not null
382 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
383
384 void refcnt_dec ()
385 {
386 if (!is_constant (p))
387 --*refcnt_ref ();
388 else if (p)
389 --p->refcnt;
390 }
391
392 void refcnt_inc ()
393 {
394 if (!is_constant (p))
395 ++*refcnt_ref ();
396 else if (p)
397 ++p->refcnt;
398 }
399
119 T *p; 400 T *p;
120 401
121 refptr () : p(0) { } 402 refptr () : p(0) { }
122 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 403 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
123 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 404 refptr (T *p) : p(p) { refcnt_inc (); }
124 ~refptr () { if (p) p->refcnt_dec (); } 405 ~refptr () { refcnt_dec (); }
125 406
126 const refptr<T> &operator =(T *o) 407 const refptr<T> &operator =(T *o)
127 { 408 {
409 // if decrementing ever destroys we need to reverse the order here
128 if (p) p->refcnt_dec (); 410 refcnt_dec ();
129 p = o; 411 p = o;
130 if (p) p->refcnt_inc (); 412 refcnt_inc ();
131
132 return *this; 413 return *this;
133 } 414 }
134 415
135 const refptr<T> &operator =(const refptr<T> o) 416 const refptr<T> &operator =(const refptr<T> &o)
136 { 417 {
137 *this = o.p; 418 *this = o.p;
138 return *this; 419 return *this;
139 } 420 }
140 421
141 T &operator * () const { return *p; } 422 T &operator * () const { return *p; }
142 T *operator ->() const { return p; } 423 T *operator ->() const { return p; }
143 424
144 operator T *() const { return p; } 425 operator T *() const { return p; }
145}; 426};
427
428typedef refptr<maptile> maptile_ptr;
429typedef refptr<object> object_ptr;
430typedef refptr<archetype> arch_ptr;
431typedef refptr<client> client_ptr;
432typedef refptr<player> player_ptr;
146 433
147struct str_hash 434struct str_hash
148{ 435{
149 std::size_t operator ()(const char *s) const 436 std::size_t operator ()(const char *s) const
150 { 437 {
176 { 463 {
177 return !strcmp (a, b); 464 return !strcmp (a, b);
178 } 465 }
179}; 466};
180 467
181#include <vector> 468// Mostly the same as std::vector, but insert/erase can reorder
182 469// the elements, making append(=insert)/remove O(1) instead of O(n).
470//
471// NOTE: only some forms of erase are available
183template<class obj> 472template<class T>
184struct unordered_vector : std::vector<obj, slice_allocator<obj> > 473struct unordered_vector : std::vector<T, slice_allocator<T> >
185{ 474{
186 typedef typename unordered_vector::iterator iterator; 475 typedef typename unordered_vector::iterator iterator;
187 476
188 void erase (unsigned int pos) 477 void erase (unsigned int pos)
189 { 478 {
197 { 486 {
198 erase ((unsigned int )(i - this->begin ())); 487 erase ((unsigned int )(i - this->begin ()));
199 } 488 }
200}; 489};
201 490
202template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 491// This container blends advantages of linked lists
203template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 492// (efficiency) with vectors (random access) by
204template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 493// by using an unordered vector and storing the vector
494// index inside the object.
495//
496// + memory-efficient on most 64 bit archs
497// + O(1) insert/remove
498// + free unique (but varying) id for inserted objects
499// + cache-friendly iteration
500// - only works for pointers to structs
501//
502// NOTE: only some forms of erase/insert are available
503typedef int object_vector_index;
205 504
206template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 505template<class T, object_vector_index T::*indexmember>
506struct object_vector : std::vector<T *, slice_allocator<T *> >
507{
508 typedef typename object_vector::iterator iterator;
509
510 bool contains (const T *obj) const
511 {
512 return obj->*indexmember;
513 }
514
515 iterator find (const T *obj)
516 {
517 return obj->*indexmember
518 ? this->begin () + obj->*indexmember - 1
519 : this->end ();
520 }
521
522 void push_back (T *obj)
523 {
524 std::vector<T *, slice_allocator<T *> >::push_back (obj);
525 obj->*indexmember = this->size ();
526 }
527
528 void insert (T *obj)
529 {
530 push_back (obj);
531 }
532
533 void insert (T &obj)
534 {
535 insert (&obj);
536 }
537
538 void erase (T *obj)
539 {
540 unsigned int pos = obj->*indexmember;
541 obj->*indexmember = 0;
542
543 if (pos < this->size ())
544 {
545 (*this)[pos - 1] = (*this)[this->size () - 1];
546 (*this)[pos - 1]->*indexmember = pos;
547 }
548
549 this->pop_back ();
550 }
551
552 void erase (T &obj)
553 {
554 erase (&obj);
555 }
556};
207 557
208// basically does what strncpy should do, but appends "..." to strings exceeding length 558// basically does what strncpy should do, but appends "..." to strings exceeding length
209void assign (char *dst, const char *src, int maxlen); 559void assign (char *dst, const char *src, int maxlen);
210 560
211// type-safe version of assign 561// type-safe version of assign
213inline void assign (char (&dst)[N], const char *src) 563inline void assign (char (&dst)[N], const char *src)
214{ 564{
215 assign ((char *)&dst, src, N); 565 assign ((char *)&dst, src, N);
216} 566}
217 567
568typedef double tstamp;
569
570// return current time as timestamp
571tstamp now ();
572
573int similar_direction (int a, int b);
574
575// like sprintf, but returns a "static" buffer
576const char *format (const char *format, ...);
577
578/////////////////////////////////////////////////////////////////////////////
579// threads, very very thin wrappers around pthreads
580
581struct thread
582{
583 pthread_t id;
584
585 void start (void *(*start_routine)(void *), void *arg = 0);
586
587 void cancel ()
588 {
589 pthread_cancel (id);
590 }
591
592 void *join ()
593 {
594 void *ret;
595
596 if (pthread_join (id, &ret))
597 cleanup ("pthread_join failed", 1);
598
599 return ret;
600 }
601};
602
603// note that mutexes are not classes
604typedef pthread_mutex_t smutex;
605
606#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
607 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
608#else
609 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
218#endif 610#endif
219 611
612#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
613#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
614#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
615
616typedef pthread_cond_t scond;
617
618#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
619#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
620#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
621#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
622
623#endif
624

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines