ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.45 by root, Sat May 26 15:44:05 2007 UTC vs.
Revision 1.130 by root, Wed Dec 5 19:03:27 2018 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 *
7 * Deliantra is free software: you can redistribute it and/or modify it under
8 * the terms of the Affero GNU General Public License as published by the
9 * Free Software Foundation, either version 3 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the Affero GNU General Public License
18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
1#ifndef UTIL_H__ 24#ifndef UTIL_H__
2#define UTIL_H__ 25#define UTIL_H__
3 26
4//#define PREFER_MALLOC 27#include <compiler.h>
5 28
6#if __GNUC__ >= 3 29#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 30#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8# define expect(expr,value) __builtin_expect ((expr),(value)) 31#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
10#else
11# define is_constant(c) 0
12# define expect(expr,value) (expr)
13# define prefetch(addr,rw,locality)
14#endif
15 32
16// put into ifs if you are very sure that the expression 33#include <pthread.h>
17// is mostly true or mosty false. note that these return
18// booleans, not the expression.
19#define expect_false(expr) expect ((expr) != 0, 0)
20#define expect_true(expr) expect ((expr) != 0, 1)
21 34
22#include <cstddef> 35#include <cstddef>
23#include <cmath> 36#include <cmath>
24#include <new> 37#include <new>
25#include <vector> 38#include <vector>
26 39
27#include <glib.h> 40#include <glib.h>
28 41
42#include <flat_hash_map.hpp>
43
29#include <shstr.h> 44#include <shstr.h>
30#include <traits.h> 45#include <traits.h>
31 46
32// use a gcc extension for auto declarations until ISO C++ sanctifies them 47#if DEBUG_SALLOC
33#define auto(var,expr) typeof(expr) var = (expr) 48# define g_slice_alloc0(s) debug_slice_alloc0(s)
49# define g_slice_alloc(s) debug_slice_alloc(s)
50# define g_slice_free1(s,p) debug_slice_free1(s,p)
51void *g_slice_alloc (unsigned long size);
52void *g_slice_alloc0 (unsigned long size);
53void g_slice_free1 (unsigned long size, void *ptr);
54#elif PREFER_MALLOC
55# define g_slice_alloc0(s) calloc (1, (s))
56# define g_slice_alloc(s) malloc ((s))
57# define g_slice_free1(s,p) free ((p))
58#endif
34 59
35// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
36// that is in scope for the next statement only 61// that is in scope for the next statement only
37// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
38// (note: works great for pointers) 63// (note: works great for pointers)
39// most ugly macro I ever wrote 64// most ugly macro I ever wrote
40#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
41 66
42// in range including end 67// in range including end
43#define IN_RANGE_INC(val,beg,end) \ 68#define IN_RANGE_INC(val,beg,end) \
44 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
45 70
46// in range excluding end 71// in range excluding end
47#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
48 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
49 74
75ecb_cold void cleanup (const char *cause, bool make_core = false);
50void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
51 77
52// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
53// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
54template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
55template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
56template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
57 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
58template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
59 89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
103
104// sign0 returns -1, 0 or +1
105template<typename T>
106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
111
112// div* only work correctly for div > 0
113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
114template<typename T> static inline T div (T val, T div)
115{
116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
122// div, round-up
123template<typename T> static inline T div_ru (T val, T div)
124{
125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126}
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div)
129{
130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131}
132
133// lerp* only work correctly for min_in < max_in
134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
60template<typename T> 135template<typename T>
61static inline T 136static inline T
62lerp (T val, T min_in, T max_in, T min_out, T max_out) 137lerp (T val, T min_in, T max_in, T min_out, T max_out)
63{ 138{
64 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140}
141
142// lerp, round-down
143template<typename T>
144static inline T
145lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-up
151template<typename T>
152static inline T
153lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
65} 156}
66 157
67// lots of stuff taken from FXT 158// lots of stuff taken from FXT
68 159
69/* Rotate right. This is used in various places for checksumming */ 160/* Rotate right. This is used in various places for checksumming */
107 int32_t d = b - a; 198 int32_t d = b - a;
108 d &= d >> 31; 199 d &= d >> 31;
109 return b - d; 200 return b - d;
110} 201}
111 202
112// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
113// on modern cpus 204// on modern cpus
114inline int 205inline int
115isqrt (int n) 206isqrt (int n)
116{ 207{
117 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
118} 223}
119 224
120// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
121#if 0 226#if 0
122// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
123#else 228#else
124// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
125#endif 230#endif
126inline int 231inline int
127idistance (int dx, int dy) 232idistance (int dx, int dy)
128{ 233{
129 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
130 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
131 236
132#if 0 237#if 0
133 return dx_ > dy_ 238 return dx_ > dy_
136#else 241#else
137 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
138#endif 243#endif
139} 244}
140 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
141/* 266/*
142 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
143 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
144 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
145 */ 270 */
147absdir (int d) 272absdir (int d)
148{ 273{
149 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
150} 275}
151 276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
281extern ssize_t slice_alloc; // statistics
282
283void *salloc_ (int n);
284void *salloc_ (int n, void *src);
285
286// strictly the same as g_slice_alloc, but never returns 0
287template<typename T>
288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
289
290// also copies src into the new area, like "memdup"
291// if src is 0, clears the memory
292template<typename T>
293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294
295// clears the memory
296template<typename T>
297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
298
299// for symmetry
300template<typename T>
301inline void sfree (T *ptr, int n = 1) noexcept
302{
303 if (ecb_expect_true (ptr))
304 {
305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 }
309}
310
311// nulls the pointer
312template<typename T>
313inline void sfree0 (T *&ptr, int n = 1) noexcept
314{
315 sfree<T> (ptr, n);
316 ptr = 0;
317}
318
152// makes dynamically allocated objects zero-initialised 319// makes dynamically allocated objects zero-initialised
153struct zero_initialised 320struct zero_initialised
154{ 321{
155 void *operator new (size_t s, void *p) 322 void *operator new (size_t s, void *p)
156 { 323 {
158 return p; 325 return p;
159 } 326 }
160 327
161 void *operator new (size_t s) 328 void *operator new (size_t s)
162 { 329 {
163 return g_slice_alloc0 (s); 330 return salloc0<char> (s);
164 } 331 }
165 332
166 void *operator new[] (size_t s) 333 void *operator new[] (size_t s)
167 { 334 {
168 return g_slice_alloc0 (s); 335 return salloc0<char> (s);
169 } 336 }
170 337
171 void operator delete (void *p, size_t s) 338 void operator delete (void *p, size_t s)
172 { 339 {
173 g_slice_free1 (s, p); 340 sfree ((char *)p, s);
174 } 341 }
175 342
176 void operator delete[] (void *p, size_t s) 343 void operator delete[] (void *p, size_t s)
177 { 344 {
178 g_slice_free1 (s, p); 345 sfree ((char *)p, s);
179 } 346 }
180}; 347};
181 348
182void *salloc_ (int n) throw (std::bad_alloc); 349// makes dynamically allocated objects zero-initialised
183void *salloc_ (int n, void *src) throw (std::bad_alloc); 350struct slice_allocated
184
185// strictly the same as g_slice_alloc, but never returns 0
186template<typename T>
187inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
188
189// also copies src into the new area, like "memdup"
190// if src is 0, clears the memory
191template<typename T>
192inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
193
194// clears the memory
195template<typename T>
196inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
197
198// for symmetry
199template<typename T>
200inline void sfree (T *ptr, int n = 1) throw ()
201{ 351{
202#ifdef PREFER_MALLOC 352 void *operator new (size_t s, void *p)
203 free (ptr); 353 {
204#else 354 return p;
205 g_slice_free1 (n * sizeof (T), (void *)ptr); 355 }
206#endif 356
207} 357 void *operator new (size_t s)
358 {
359 return salloc<char> (s);
360 }
361
362 void *operator new[] (size_t s)
363 {
364 return salloc<char> (s);
365 }
366
367 void operator delete (void *p, size_t s)
368 {
369 sfree ((char *)p, s);
370 }
371
372 void operator delete[] (void *p, size_t s)
373 {
374 sfree ((char *)p, s);
375 }
376};
208 377
209// a STL-compatible allocator that uses g_slice 378// a STL-compatible allocator that uses g_slice
210// boy, this is verbose 379// boy, this is verbose
211template<typename Tp> 380template<typename Tp>
212struct slice_allocator 381struct slice_allocator
217 typedef const Tp *const_pointer; 386 typedef const Tp *const_pointer;
218 typedef Tp &reference; 387 typedef Tp &reference;
219 typedef const Tp &const_reference; 388 typedef const Tp &const_reference;
220 typedef Tp value_type; 389 typedef Tp value_type;
221 390
222 template <class U> 391 template <class U>
223 struct rebind 392 struct rebind
224 { 393 {
225 typedef slice_allocator<U> other; 394 typedef slice_allocator<U> other;
226 }; 395 };
227 396
228 slice_allocator () throw () { } 397 slice_allocator () noexcept { }
229 slice_allocator (const slice_allocator &o) throw () { } 398 slice_allocator (const slice_allocator &) noexcept { }
230 template<typename Tp2> 399 template<typename Tp2>
231 slice_allocator (const slice_allocator<Tp2> &) throw () { } 400 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
232 401
233 ~slice_allocator () { } 402 ~slice_allocator () { }
234 403
235 pointer address (reference x) const { return &x; } 404 pointer address (reference x) const { return &x; }
236 const_pointer address (const_reference x) const { return &x; } 405 const_pointer address (const_reference x) const { return &x; }
243 void deallocate (pointer p, size_type n) 412 void deallocate (pointer p, size_type n)
244 { 413 {
245 sfree<Tp> (p, n); 414 sfree<Tp> (p, n);
246 } 415 }
247 416
248 size_type max_size ()const throw () 417 size_type max_size () const noexcept
249 { 418 {
250 return size_t (-1) / sizeof (Tp); 419 return size_t (-1) / sizeof (Tp);
251 } 420 }
252 421
253 void construct (pointer p, const Tp &val) 422 void construct (pointer p, const Tp &val)
259 { 428 {
260 p->~Tp (); 429 p->~Tp ();
261 } 430 }
262}; 431};
263 432
264// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 433// basically a memory area, but refcounted
265// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 434struct refcnt_buf
266// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
267struct tausworthe_random_generator
268{ 435{
269 // generator 436 char *data;
270 uint32_t state [4];
271 437
272 void operator =(const tausworthe_random_generator &src) 438 refcnt_buf (size_t size = 0);
273 { 439 refcnt_buf (void *data, size_t size);
274 state [0] = src.state [0];
275 state [1] = src.state [1];
276 state [2] = src.state [2];
277 state [3] = src.state [3];
278 }
279 440
280 void seed (uint32_t seed); 441 refcnt_buf (const refcnt_buf &src)
281 uint32_t next ();
282
283 // uniform distribution
284 uint32_t operator ()(uint32_t num)
285 { 442 {
286 return is_constant (num) 443 data = src.data;
287 ? (next () * (uint64_t)num) >> 32U 444 inc ();
288 : get_range (num);
289 } 445 }
290 446
291 // return a number within (min .. max) 447 ~refcnt_buf ();
292 int operator () (int r_min, int r_max)
293 {
294 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
295 ? r_min + operator ()(r_max - r_min + 1)
296 : get_range (r_min, r_max);
297 }
298 448
299 double operator ()() 449 refcnt_buf &operator =(const refcnt_buf &src);
450
451 operator char *()
300 { 452 {
301 return this->next () / (double)0xFFFFFFFFU; 453 return data;
454 }
455
456 size_t size () const
457 {
458 return _size ();
302 } 459 }
303 460
304protected: 461protected:
305 uint32_t get_range (uint32_t r_max); 462 enum {
306 int get_range (int r_min, int r_max); 463 overhead = sizeof (uint32_t) * 2
307}; 464 };
308 465
309typedef tausworthe_random_generator rand_gen; 466 uint32_t &_size () const
467 {
468 return ((unsigned int *)data)[-2];
469 }
310 470
311extern rand_gen rndm; 471 uint32_t &_refcnt () const
472 {
473 return ((unsigned int *)data)[-1];
474 }
475
476 void _alloc (uint32_t size)
477 {
478 data = ((char *)salloc<char> (size + overhead)) + overhead;
479 _size () = size;
480 _refcnt () = 1;
481 }
482
483 void _dealloc ();
484
485 void inc ()
486 {
487 ++_refcnt ();
488 }
489
490 void dec ()
491 {
492 if (!--_refcnt ())
493 _dealloc ();
494 }
495};
496
497INTERFACE_CLASS (attachable)
498struct refcnt_base
499{
500 typedef int refcnt_t;
501 mutable refcnt_t ACC (RW, refcnt);
502
503 MTH void refcnt_inc () const { ++refcnt; }
504 MTH void refcnt_dec () const { --refcnt; }
505
506 refcnt_base () : refcnt (0) { }
507};
508
509// to avoid branches with more advanced compilers
510extern refcnt_base::refcnt_t refcnt_dummy;
312 511
313template<class T> 512template<class T>
314struct refptr 513struct refptr
315{ 514{
515 // p if not null
516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
517
518 void refcnt_dec ()
519 {
520 if (!ecb_is_constant (p))
521 --*refcnt_ref ();
522 else if (p)
523 --p->refcnt;
524 }
525
526 void refcnt_inc ()
527 {
528 if (!ecb_is_constant (p))
529 ++*refcnt_ref ();
530 else if (p)
531 ++p->refcnt;
532 }
533
316 T *p; 534 T *p;
317 535
318 refptr () : p(0) { } 536 refptr () : p(0) { }
319 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 537 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
320 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 538 refptr (T *p) : p(p) { refcnt_inc (); }
321 ~refptr () { if (p) p->refcnt_dec (); } 539 ~refptr () { refcnt_dec (); }
322 540
323 const refptr<T> &operator =(T *o) 541 const refptr<T> &operator =(T *o)
324 { 542 {
543 // if decrementing ever destroys we need to reverse the order here
325 if (p) p->refcnt_dec (); 544 refcnt_dec ();
326 p = o; 545 p = o;
327 if (p) p->refcnt_inc (); 546 refcnt_inc ();
328
329 return *this; 547 return *this;
330 } 548 }
331 549
332 const refptr<T> &operator =(const refptr<T> o) 550 const refptr<T> &operator =(const refptr<T> &o)
333 { 551 {
334 *this = o.p; 552 *this = o.p;
335 return *this; 553 return *this;
336 } 554 }
337 555
338 T &operator * () const { return *p; } 556 T &operator * () const { return *p; }
339 T *operator ->() const { return p; } 557 T *operator ->() const { return p; }
340 558
341 operator T *() const { return p; } 559 operator T *() const { return p; }
342}; 560};
343 561
344typedef refptr<maptile> maptile_ptr; 562typedef refptr<maptile> maptile_ptr;
345typedef refptr<object> object_ptr; 563typedef refptr<object> object_ptr;
346typedef refptr<archetype> arch_ptr; 564typedef refptr<archetype> arch_ptr;
347typedef refptr<client> client_ptr; 565typedef refptr<client> client_ptr;
348typedef refptr<player> player_ptr; 566typedef refptr<player> player_ptr;
567typedef refptr<region> region_ptr;
568
569#define STRHSH_NULL 2166136261
570
571static inline uint32_t
572strhsh (const char *s)
573{
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrently with the looping logic.
579 // we modify the hash a bit to improve its distribution
580 uint32_t hash = STRHSH_NULL;
581
582 while (*s)
583 hash = (hash ^ *s++) * 16777619U;
584
585 return hash ^ (hash >> 16);
586}
587
588static inline uint32_t
589memhsh (const char *s, size_t len)
590{
591 uint32_t hash = STRHSH_NULL;
592
593 while (len--)
594 hash = (hash ^ *s++) * 16777619U;
595
596 return hash;
597}
349 598
350struct str_hash 599struct str_hash
351{ 600{
352 std::size_t operator ()(const char *s) const 601 std::size_t operator ()(const char *s) const
353 { 602 {
354 unsigned long hash = 0;
355
356 /* use the one-at-a-time hash function, which supposedly is
357 * better than the djb2-like one used by perl5.005, but
358 * certainly is better then the bug used here before.
359 * see http://burtleburtle.net/bob/hash/doobs.html
360 */
361 while (*s)
362 {
363 hash += *s++;
364 hash += hash << 10;
365 hash ^= hash >> 6;
366 }
367
368 hash += hash << 3;
369 hash ^= hash >> 11;
370 hash += hash << 15;
371
372 return hash; 603 return strhsh (s);
373 } 604 }
605
606 std::size_t operator ()(const shstr &s) const
607 {
608 return strhsh (s);
609 }
610
611 typedef ska::power_of_two_hash_policy hash_policy;
374}; 612};
375 613
376struct str_equal 614struct str_equal
377{ 615{
378 bool operator ()(const char *a, const char *b) const 616 bool operator ()(const char *a, const char *b) const
379 { 617 {
380 return !strcmp (a, b); 618 return !strcmp (a, b);
381 } 619 }
382}; 620};
383 621
622// Mostly the same as std::vector, but insert/erase can reorder
623// the elements, making append(=insert)/remove O(1) instead of O(n).
624//
625// NOTE: only some forms of erase are available
384template<class T> 626template<class T>
385struct unordered_vector : std::vector<T, slice_allocator<T> > 627struct unordered_vector : std::vector<T, slice_allocator<T> >
386{ 628{
387 typedef typename unordered_vector::iterator iterator; 629 typedef typename unordered_vector::iterator iterator;
388 630
398 { 640 {
399 erase ((unsigned int )(i - this->begin ())); 641 erase ((unsigned int )(i - this->begin ()));
400 } 642 }
401}; 643};
402 644
403template<class T, int T::* index> 645// This container blends advantages of linked lists
646// (efficiency) with vectors (random access) by
647// using an unordered vector and storing the vector
648// index inside the object.
649//
650// + memory-efficient on most 64 bit archs
651// + O(1) insert/remove
652// + free unique (but varying) id for inserted objects
653// + cache-friendly iteration
654// - only works for pointers to structs
655//
656// NOTE: only some forms of erase/insert are available
657typedef int object_vector_index;
658
659template<class T, object_vector_index T::*indexmember>
404struct object_vector : std::vector<T *, slice_allocator<T *> > 660struct object_vector : std::vector<T *, slice_allocator<T *> >
405{ 661{
662 typedef typename object_vector::iterator iterator;
663
664 bool contains (const T *obj) const
665 {
666 return obj->*indexmember;
667 }
668
669 iterator find (const T *obj)
670 {
671 return obj->*indexmember
672 ? this->begin () + obj->*indexmember - 1
673 : this->end ();
674 }
675
676 void push_back (T *obj)
677 {
678 std::vector<T *, slice_allocator<T *> >::push_back (obj);
679 obj->*indexmember = this->size ();
680 }
681
406 void insert (T *obj) 682 void insert (T *obj)
407 { 683 {
408 assert (!(obj->*index));
409 push_back (obj); 684 push_back (obj);
410 obj->*index = this->size ();
411 } 685 }
412 686
413 void insert (T &obj) 687 void insert (T &obj)
414 { 688 {
415 insert (&obj); 689 insert (&obj);
416 } 690 }
417 691
418 void erase (T *obj) 692 void erase (T *obj)
419 { 693 {
420 assert (obj->*index); 694 object_vector_index pos = obj->*indexmember;
421 unsigned int pos = obj->*index;
422 obj->*index = 0; 695 obj->*indexmember = 0;
423 696
424 if (pos < this->size ()) 697 if (pos < this->size ())
425 { 698 {
426 (*this)[pos - 1] = (*this)[this->size () - 1]; 699 (*this)[pos - 1] = (*this)[this->size () - 1];
427 (*this)[pos - 1]->*index = pos; 700 (*this)[pos - 1]->*indexmember = pos;
428 } 701 }
429 702
430 this->pop_back (); 703 this->pop_back ();
431 } 704 }
432 705
433 void erase (T &obj) 706 void erase (T &obj)
434 { 707 {
435 errase (&obj); 708 erase (&obj);
436 } 709 }
437}; 710};
711
712/////////////////////////////////////////////////////////////////////////////
713
714// something like a vector or stack, but without
715// out of bounds checking
716template<typename T>
717struct fixed_stack
718{
719 T *data;
720 int size;
721 int max;
722
723 fixed_stack ()
724 : size (0), data (0)
725 {
726 }
727
728 fixed_stack (int max)
729 : size (0), max (max)
730 {
731 data = salloc<T> (max);
732 }
733
734 void reset (int new_max)
735 {
736 sfree (data, max);
737 size = 0;
738 max = new_max;
739 data = salloc<T> (max);
740 }
741
742 void free ()
743 {
744 sfree (data, max);
745 data = 0;
746 }
747
748 ~fixed_stack ()
749 {
750 sfree (data, max);
751 }
752
753 T &operator[](int idx)
754 {
755 return data [idx];
756 }
757
758 void push (T v)
759 {
760 data [size++] = v;
761 }
762
763 T &pop ()
764 {
765 return data [--size];
766 }
767
768 T remove (int idx)
769 {
770 T v = data [idx];
771
772 data [idx] = data [--size];
773
774 return v;
775 }
776};
777
778/////////////////////////////////////////////////////////////////////////////
438 779
439// basically does what strncpy should do, but appends "..." to strings exceeding length 780// basically does what strncpy should do, but appends "..." to strings exceeding length
781// returns the number of bytes actually used (including \0)
440void assign (char *dst, const char *src, int maxlen); 782int assign (char *dst, const char *src, int maxsize);
441 783
442// type-safe version of assign 784// type-safe version of assign
443template<int N> 785template<int N>
444inline void assign (char (&dst)[N], const char *src) 786inline int assign (char (&dst)[N], const char *src)
445{ 787{
446 assign ((char *)&dst, src, N); 788 return assign ((char *)&dst, src, N);
447} 789}
448 790
449typedef double tstamp; 791typedef double tstamp;
450 792
451// return current time as timestampe 793// return current time as timestamp
452tstamp now (); 794tstamp now ();
453 795
454int similar_direction (int a, int b); 796int similar_direction (int a, int b);
455 797
456// like printf, but returns a std::string 798// like v?sprintf, but returns a "static" buffer
457const std::string format (const char *format, ...); 799char *vformat (const char *format, va_list ap);
800char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
458 801
802// safety-check player input which will become object->msg
803bool msg_is_safe (const char *msg);
804
805/////////////////////////////////////////////////////////////////////////////
806// threads, very very thin wrappers around pthreads
807
808struct thread
809{
810 pthread_t id;
811
812 void start (void *(*start_routine)(void *), void *arg = 0);
813
814 void cancel ()
815 {
816 pthread_cancel (id);
817 }
818
819 void *join ()
820 {
821 void *ret;
822
823 if (pthread_join (id, &ret))
824 cleanup ("pthread_join failed", 1);
825
826 return ret;
827 }
828};
829
830// note that mutexes are not classes
831typedef pthread_mutex_t smutex;
832
833#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
834 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
835#else
836 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
459#endif 837#endif
460 838
839#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
840#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
841#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
842
843typedef pthread_cond_t scond;
844
845#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
846#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
847#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
848#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
849
850#endif
851

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines