ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.48 by root, Mon Jun 4 12:19:08 2007 UTC vs.
Revision 1.130 by root, Wed Dec 5 19:03:27 2018 UTC

1/* 1/*
2 * This file is part of Crossfire TRT, the Multiplayer Online Role Playing Game. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team 4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Crossfire TRT is free software; you can redistribute it and/or modify it 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * under the terms of the GNU General Public License as published by the Free 8 * the terms of the Affero GNU General Public License as published by the
8 * Software Foundation; either version 2 of the License, or (at your option) 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, but 12 * This program is distributed in the hope that it will be useful,
12 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the GNU General Public License along 17 * You should have received a copy of the Affero GNU General Public License
17 * with Crossfire TRT; if not, write to the Free Software Foundation, Inc. 51 18 * and the GNU General Public License along with this program. If not, see
18 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 19 * <http://www.gnu.org/licenses/>.
19 * 20 *
20 * The authors can be reached via e-mail to <crossfire@schmorp.de> 21 * The authors can be reached via e-mail to <support@deliantra.net>
21 */ 22 */
22 23
23#ifndef UTIL_H__ 24#ifndef UTIL_H__
24#define UTIL_H__ 25#define UTIL_H__
25 26
26//#define PREFER_MALLOC 27#include <compiler.h>
27 28
28#if __GNUC__ >= 3 29#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29# define is_constant(c) __builtin_constant_p (c) 30#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30# define expect(expr,value) __builtin_expect ((expr),(value)) 31#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32#else
33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
36#endif
37 32
38#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4) 33#include <pthread.h>
39# define decltype(x) typeof(x)
40#endif
41
42// put into ifs if you are very sure that the expression
43// is mostly true or mosty false. note that these return
44// booleans, not the expression.
45#define expect_false(expr) expect ((expr) != 0, 0)
46#define expect_true(expr) expect ((expr) != 0, 1)
47 34
48#include <cstddef> 35#include <cstddef>
49#include <cmath> 36#include <cmath>
50#include <new> 37#include <new>
51#include <vector> 38#include <vector>
52 39
53#include <glib.h> 40#include <glib.h>
54 41
42#include <flat_hash_map.hpp>
43
55#include <shstr.h> 44#include <shstr.h>
56#include <traits.h> 45#include <traits.h>
57 46
58// use a gcc extension for auto declarations until ISO C++ sanctifies them 47#if DEBUG_SALLOC
59#define auto(var,expr) decltype(expr) var = (expr) 48# define g_slice_alloc0(s) debug_slice_alloc0(s)
49# define g_slice_alloc(s) debug_slice_alloc(s)
50# define g_slice_free1(s,p) debug_slice_free1(s,p)
51void *g_slice_alloc (unsigned long size);
52void *g_slice_alloc0 (unsigned long size);
53void g_slice_free1 (unsigned long size, void *ptr);
54#elif PREFER_MALLOC
55# define g_slice_alloc0(s) calloc (1, (s))
56# define g_slice_alloc(s) malloc ((s))
57# define g_slice_free1(s,p) free ((p))
58#endif
60 59
61// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
62// that is in scope for the next statement only 61// that is in scope for the next statement only
63// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
64// (note: works great for pointers) 63// (note: works great for pointers)
65// most ugly macro I ever wrote 64// most ugly macro I ever wrote
66#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
71 70
72// in range excluding end 71// in range excluding end
73#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
74 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
75 74
75ecb_cold void cleanup (const char *cause, bool make_core = false);
76void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
77 77
78// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
79// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
84template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
85 89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
103
104// sign0 returns -1, 0 or +1
105template<typename T>
106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
111
112// div* only work correctly for div > 0
113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
114template<typename T> static inline T div (T val, T div)
115{
116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
122// div, round-up
123template<typename T> static inline T div_ru (T val, T div)
124{
125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126}
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div)
129{
130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131}
132
133// lerp* only work correctly for min_in < max_in
134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
86template<typename T> 135template<typename T>
87static inline T 136static inline T
88lerp (T val, T min_in, T max_in, T min_out, T max_out) 137lerp (T val, T min_in, T max_in, T min_out, T max_out)
89{ 138{
90 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140}
141
142// lerp, round-down
143template<typename T>
144static inline T
145lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-up
151template<typename T>
152static inline T
153lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
91} 156}
92 157
93// lots of stuff taken from FXT 158// lots of stuff taken from FXT
94 159
95/* Rotate right. This is used in various places for checksumming */ 160/* Rotate right. This is used in various places for checksumming */
133 int32_t d = b - a; 198 int32_t d = b - a;
134 d &= d >> 31; 199 d &= d >> 31;
135 return b - d; 200 return b - d;
136} 201}
137 202
138// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
139// on modern cpus 204// on modern cpus
140inline int 205inline int
141isqrt (int n) 206isqrt (int n)
142{ 207{
143 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
144} 223}
145 224
146// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
147#if 0 226#if 0
148// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
149#else 228#else
150// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
151#endif 230#endif
152inline int 231inline int
153idistance (int dx, int dy) 232idistance (int dx, int dy)
154{ 233{
155 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
156 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
157 236
158#if 0 237#if 0
159 return dx_ > dy_ 238 return dx_ > dy_
162#else 241#else
163 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
164#endif 243#endif
165} 244}
166 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
167/* 266/*
168 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
169 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
170 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
171 */ 270 */
173absdir (int d) 272absdir (int d)
174{ 273{
175 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
176} 275}
177 276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
281extern ssize_t slice_alloc; // statistics
282
283void *salloc_ (int n);
284void *salloc_ (int n, void *src);
285
286// strictly the same as g_slice_alloc, but never returns 0
287template<typename T>
288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
289
290// also copies src into the new area, like "memdup"
291// if src is 0, clears the memory
292template<typename T>
293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294
295// clears the memory
296template<typename T>
297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
298
299// for symmetry
300template<typename T>
301inline void sfree (T *ptr, int n = 1) noexcept
302{
303 if (ecb_expect_true (ptr))
304 {
305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 }
309}
310
311// nulls the pointer
312template<typename T>
313inline void sfree0 (T *&ptr, int n = 1) noexcept
314{
315 sfree<T> (ptr, n);
316 ptr = 0;
317}
318
178// makes dynamically allocated objects zero-initialised 319// makes dynamically allocated objects zero-initialised
179struct zero_initialised 320struct zero_initialised
180{ 321{
181 void *operator new (size_t s, void *p) 322 void *operator new (size_t s, void *p)
182 { 323 {
184 return p; 325 return p;
185 } 326 }
186 327
187 void *operator new (size_t s) 328 void *operator new (size_t s)
188 { 329 {
189 return g_slice_alloc0 (s); 330 return salloc0<char> (s);
190 } 331 }
191 332
192 void *operator new[] (size_t s) 333 void *operator new[] (size_t s)
193 { 334 {
194 return g_slice_alloc0 (s); 335 return salloc0<char> (s);
195 } 336 }
196 337
197 void operator delete (void *p, size_t s) 338 void operator delete (void *p, size_t s)
198 { 339 {
199 g_slice_free1 (s, p); 340 sfree ((char *)p, s);
200 } 341 }
201 342
202 void operator delete[] (void *p, size_t s) 343 void operator delete[] (void *p, size_t s)
203 { 344 {
204 g_slice_free1 (s, p); 345 sfree ((char *)p, s);
205 } 346 }
206}; 347};
207 348
208void *salloc_ (int n) throw (std::bad_alloc); 349// makes dynamically allocated objects zero-initialised
209void *salloc_ (int n, void *src) throw (std::bad_alloc); 350struct slice_allocated
210
211// strictly the same as g_slice_alloc, but never returns 0
212template<typename T>
213inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
214
215// also copies src into the new area, like "memdup"
216// if src is 0, clears the memory
217template<typename T>
218inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
219
220// clears the memory
221template<typename T>
222inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
223
224// for symmetry
225template<typename T>
226inline void sfree (T *ptr, int n = 1) throw ()
227{ 351{
228#ifdef PREFER_MALLOC 352 void *operator new (size_t s, void *p)
229 free (ptr); 353 {
230#else 354 return p;
231 g_slice_free1 (n * sizeof (T), (void *)ptr); 355 }
232#endif 356
233} 357 void *operator new (size_t s)
358 {
359 return salloc<char> (s);
360 }
361
362 void *operator new[] (size_t s)
363 {
364 return salloc<char> (s);
365 }
366
367 void operator delete (void *p, size_t s)
368 {
369 sfree ((char *)p, s);
370 }
371
372 void operator delete[] (void *p, size_t s)
373 {
374 sfree ((char *)p, s);
375 }
376};
234 377
235// a STL-compatible allocator that uses g_slice 378// a STL-compatible allocator that uses g_slice
236// boy, this is verbose 379// boy, this is verbose
237template<typename Tp> 380template<typename Tp>
238struct slice_allocator 381struct slice_allocator
243 typedef const Tp *const_pointer; 386 typedef const Tp *const_pointer;
244 typedef Tp &reference; 387 typedef Tp &reference;
245 typedef const Tp &const_reference; 388 typedef const Tp &const_reference;
246 typedef Tp value_type; 389 typedef Tp value_type;
247 390
248 template <class U> 391 template <class U>
249 struct rebind 392 struct rebind
250 { 393 {
251 typedef slice_allocator<U> other; 394 typedef slice_allocator<U> other;
252 }; 395 };
253 396
254 slice_allocator () throw () { } 397 slice_allocator () noexcept { }
255 slice_allocator (const slice_allocator &o) throw () { } 398 slice_allocator (const slice_allocator &) noexcept { }
256 template<typename Tp2> 399 template<typename Tp2>
257 slice_allocator (const slice_allocator<Tp2> &) throw () { } 400 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
258 401
259 ~slice_allocator () { } 402 ~slice_allocator () { }
260 403
261 pointer address (reference x) const { return &x; } 404 pointer address (reference x) const { return &x; }
262 const_pointer address (const_reference x) const { return &x; } 405 const_pointer address (const_reference x) const { return &x; }
269 void deallocate (pointer p, size_type n) 412 void deallocate (pointer p, size_type n)
270 { 413 {
271 sfree<Tp> (p, n); 414 sfree<Tp> (p, n);
272 } 415 }
273 416
274 size_type max_size ()const throw () 417 size_type max_size () const noexcept
275 { 418 {
276 return size_t (-1) / sizeof (Tp); 419 return size_t (-1) / sizeof (Tp);
277 } 420 }
278 421
279 void construct (pointer p, const Tp &val) 422 void construct (pointer p, const Tp &val)
285 { 428 {
286 p->~Tp (); 429 p->~Tp ();
287 } 430 }
288}; 431};
289 432
290// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 433// basically a memory area, but refcounted
291// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 434struct refcnt_buf
292// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
293struct tausworthe_random_generator
294{ 435{
295 // generator 436 char *data;
296 uint32_t state [4];
297 437
298 void operator =(const tausworthe_random_generator &src) 438 refcnt_buf (size_t size = 0);
299 { 439 refcnt_buf (void *data, size_t size);
300 state [0] = src.state [0];
301 state [1] = src.state [1];
302 state [2] = src.state [2];
303 state [3] = src.state [3];
304 }
305 440
306 void seed (uint32_t seed); 441 refcnt_buf (const refcnt_buf &src)
307 uint32_t next ();
308
309 // uniform distribution
310 uint32_t operator ()(uint32_t num)
311 { 442 {
312 return is_constant (num) 443 data = src.data;
313 ? (next () * (uint64_t)num) >> 32U 444 inc ();
314 : get_range (num);
315 } 445 }
316 446
317 // return a number within (min .. max) 447 ~refcnt_buf ();
318 int operator () (int r_min, int r_max)
319 {
320 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
321 ? r_min + operator ()(r_max - r_min + 1)
322 : get_range (r_min, r_max);
323 }
324 448
325 double operator ()() 449 refcnt_buf &operator =(const refcnt_buf &src);
450
451 operator char *()
326 { 452 {
327 return this->next () / (double)0xFFFFFFFFU; 453 return data;
454 }
455
456 size_t size () const
457 {
458 return _size ();
328 } 459 }
329 460
330protected: 461protected:
331 uint32_t get_range (uint32_t r_max); 462 enum {
332 int get_range (int r_min, int r_max); 463 overhead = sizeof (uint32_t) * 2
333}; 464 };
334 465
335typedef tausworthe_random_generator rand_gen; 466 uint32_t &_size () const
467 {
468 return ((unsigned int *)data)[-2];
469 }
336 470
337extern rand_gen rndm; 471 uint32_t &_refcnt () const
472 {
473 return ((unsigned int *)data)[-1];
474 }
475
476 void _alloc (uint32_t size)
477 {
478 data = ((char *)salloc<char> (size + overhead)) + overhead;
479 _size () = size;
480 _refcnt () = 1;
481 }
482
483 void _dealloc ();
484
485 void inc ()
486 {
487 ++_refcnt ();
488 }
489
490 void dec ()
491 {
492 if (!--_refcnt ())
493 _dealloc ();
494 }
495};
496
497INTERFACE_CLASS (attachable)
498struct refcnt_base
499{
500 typedef int refcnt_t;
501 mutable refcnt_t ACC (RW, refcnt);
502
503 MTH void refcnt_inc () const { ++refcnt; }
504 MTH void refcnt_dec () const { --refcnt; }
505
506 refcnt_base () : refcnt (0) { }
507};
508
509// to avoid branches with more advanced compilers
510extern refcnt_base::refcnt_t refcnt_dummy;
338 511
339template<class T> 512template<class T>
340struct refptr 513struct refptr
341{ 514{
515 // p if not null
516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
517
518 void refcnt_dec ()
519 {
520 if (!ecb_is_constant (p))
521 --*refcnt_ref ();
522 else if (p)
523 --p->refcnt;
524 }
525
526 void refcnt_inc ()
527 {
528 if (!ecb_is_constant (p))
529 ++*refcnt_ref ();
530 else if (p)
531 ++p->refcnt;
532 }
533
342 T *p; 534 T *p;
343 535
344 refptr () : p(0) { } 536 refptr () : p(0) { }
345 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 537 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
346 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 538 refptr (T *p) : p(p) { refcnt_inc (); }
347 ~refptr () { if (p) p->refcnt_dec (); } 539 ~refptr () { refcnt_dec (); }
348 540
349 const refptr<T> &operator =(T *o) 541 const refptr<T> &operator =(T *o)
350 { 542 {
543 // if decrementing ever destroys we need to reverse the order here
351 if (p) p->refcnt_dec (); 544 refcnt_dec ();
352 p = o; 545 p = o;
353 if (p) p->refcnt_inc (); 546 refcnt_inc ();
354
355 return *this; 547 return *this;
356 } 548 }
357 549
358 const refptr<T> &operator =(const refptr<T> o) 550 const refptr<T> &operator =(const refptr<T> &o)
359 { 551 {
360 *this = o.p; 552 *this = o.p;
361 return *this; 553 return *this;
362 } 554 }
363 555
364 T &operator * () const { return *p; } 556 T &operator * () const { return *p; }
365 T *operator ->() const { return p; } 557 T *operator ->() const { return p; }
366 558
367 operator T *() const { return p; } 559 operator T *() const { return p; }
368}; 560};
369 561
370typedef refptr<maptile> maptile_ptr; 562typedef refptr<maptile> maptile_ptr;
371typedef refptr<object> object_ptr; 563typedef refptr<object> object_ptr;
372typedef refptr<archetype> arch_ptr; 564typedef refptr<archetype> arch_ptr;
373typedef refptr<client> client_ptr; 565typedef refptr<client> client_ptr;
374typedef refptr<player> player_ptr; 566typedef refptr<player> player_ptr;
567typedef refptr<region> region_ptr;
568
569#define STRHSH_NULL 2166136261
570
571static inline uint32_t
572strhsh (const char *s)
573{
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrently with the looping logic.
579 // we modify the hash a bit to improve its distribution
580 uint32_t hash = STRHSH_NULL;
581
582 while (*s)
583 hash = (hash ^ *s++) * 16777619U;
584
585 return hash ^ (hash >> 16);
586}
587
588static inline uint32_t
589memhsh (const char *s, size_t len)
590{
591 uint32_t hash = STRHSH_NULL;
592
593 while (len--)
594 hash = (hash ^ *s++) * 16777619U;
595
596 return hash;
597}
375 598
376struct str_hash 599struct str_hash
377{ 600{
378 std::size_t operator ()(const char *s) const 601 std::size_t operator ()(const char *s) const
379 { 602 {
380 unsigned long hash = 0;
381
382 /* use the one-at-a-time hash function, which supposedly is
383 * better than the djb2-like one used by perl5.005, but
384 * certainly is better then the bug used here before.
385 * see http://burtleburtle.net/bob/hash/doobs.html
386 */
387 while (*s)
388 {
389 hash += *s++;
390 hash += hash << 10;
391 hash ^= hash >> 6;
392 }
393
394 hash += hash << 3;
395 hash ^= hash >> 11;
396 hash += hash << 15;
397
398 return hash; 603 return strhsh (s);
399 } 604 }
605
606 std::size_t operator ()(const shstr &s) const
607 {
608 return strhsh (s);
609 }
610
611 typedef ska::power_of_two_hash_policy hash_policy;
400}; 612};
401 613
402struct str_equal 614struct str_equal
403{ 615{
404 bool operator ()(const char *a, const char *b) const 616 bool operator ()(const char *a, const char *b) const
405 { 617 {
406 return !strcmp (a, b); 618 return !strcmp (a, b);
407 } 619 }
408}; 620};
409 621
622// Mostly the same as std::vector, but insert/erase can reorder
623// the elements, making append(=insert)/remove O(1) instead of O(n).
624//
625// NOTE: only some forms of erase are available
410template<class T> 626template<class T>
411struct unordered_vector : std::vector<T, slice_allocator<T> > 627struct unordered_vector : std::vector<T, slice_allocator<T> >
412{ 628{
413 typedef typename unordered_vector::iterator iterator; 629 typedef typename unordered_vector::iterator iterator;
414 630
424 { 640 {
425 erase ((unsigned int )(i - this->begin ())); 641 erase ((unsigned int )(i - this->begin ()));
426 } 642 }
427}; 643};
428 644
429template<class T, int T::* index> 645// This container blends advantages of linked lists
646// (efficiency) with vectors (random access) by
647// using an unordered vector and storing the vector
648// index inside the object.
649//
650// + memory-efficient on most 64 bit archs
651// + O(1) insert/remove
652// + free unique (but varying) id for inserted objects
653// + cache-friendly iteration
654// - only works for pointers to structs
655//
656// NOTE: only some forms of erase/insert are available
657typedef int object_vector_index;
658
659template<class T, object_vector_index T::*indexmember>
430struct object_vector : std::vector<T *, slice_allocator<T *> > 660struct object_vector : std::vector<T *, slice_allocator<T *> >
431{ 661{
432 typedef typename object_vector::iterator iterator; 662 typedef typename object_vector::iterator iterator;
433 663
434 bool contains (const T *obj) const 664 bool contains (const T *obj) const
435 { 665 {
436 return obj->*index; 666 return obj->*indexmember;
437 } 667 }
438 668
439 iterator find (const T *obj) 669 iterator find (const T *obj)
440 { 670 {
441 return obj->*index 671 return obj->*indexmember
442 ? this->begin () + obj->*index - 1 672 ? this->begin () + obj->*indexmember - 1
443 : this->end (); 673 : this->end ();
444 } 674 }
445 675
676 void push_back (T *obj)
677 {
678 std::vector<T *, slice_allocator<T *> >::push_back (obj);
679 obj->*indexmember = this->size ();
680 }
681
446 void insert (T *obj) 682 void insert (T *obj)
447 { 683 {
448 assert (!(obj->*index));
449 push_back (obj); 684 push_back (obj);
450 obj->*index = this->size ();
451 } 685 }
452 686
453 void insert (T &obj) 687 void insert (T &obj)
454 { 688 {
455 insert (&obj); 689 insert (&obj);
456 } 690 }
457 691
458 void erase (T *obj) 692 void erase (T *obj)
459 { 693 {
460 assert (obj->*index); 694 object_vector_index pos = obj->*indexmember;
461 unsigned int pos = obj->*index;
462 obj->*index = 0; 695 obj->*indexmember = 0;
463 696
464 if (pos < this->size ()) 697 if (pos < this->size ())
465 { 698 {
466 (*this)[pos - 1] = (*this)[this->size () - 1]; 699 (*this)[pos - 1] = (*this)[this->size () - 1];
467 (*this)[pos - 1]->*index = pos; 700 (*this)[pos - 1]->*indexmember = pos;
468 } 701 }
469 702
470 this->pop_back (); 703 this->pop_back ();
471 } 704 }
472 705
473 void erase (T &obj) 706 void erase (T &obj)
474 { 707 {
475 errase (&obj); 708 erase (&obj);
476 } 709 }
477}; 710};
711
712/////////////////////////////////////////////////////////////////////////////
713
714// something like a vector or stack, but without
715// out of bounds checking
716template<typename T>
717struct fixed_stack
718{
719 T *data;
720 int size;
721 int max;
722
723 fixed_stack ()
724 : size (0), data (0)
725 {
726 }
727
728 fixed_stack (int max)
729 : size (0), max (max)
730 {
731 data = salloc<T> (max);
732 }
733
734 void reset (int new_max)
735 {
736 sfree (data, max);
737 size = 0;
738 max = new_max;
739 data = salloc<T> (max);
740 }
741
742 void free ()
743 {
744 sfree (data, max);
745 data = 0;
746 }
747
748 ~fixed_stack ()
749 {
750 sfree (data, max);
751 }
752
753 T &operator[](int idx)
754 {
755 return data [idx];
756 }
757
758 void push (T v)
759 {
760 data [size++] = v;
761 }
762
763 T &pop ()
764 {
765 return data [--size];
766 }
767
768 T remove (int idx)
769 {
770 T v = data [idx];
771
772 data [idx] = data [--size];
773
774 return v;
775 }
776};
777
778/////////////////////////////////////////////////////////////////////////////
478 779
479// basically does what strncpy should do, but appends "..." to strings exceeding length 780// basically does what strncpy should do, but appends "..." to strings exceeding length
781// returns the number of bytes actually used (including \0)
480void assign (char *dst, const char *src, int maxlen); 782int assign (char *dst, const char *src, int maxsize);
481 783
482// type-safe version of assign 784// type-safe version of assign
483template<int N> 785template<int N>
484inline void assign (char (&dst)[N], const char *src) 786inline int assign (char (&dst)[N], const char *src)
485{ 787{
486 assign ((char *)&dst, src, N); 788 return assign ((char *)&dst, src, N);
487} 789}
488 790
489typedef double tstamp; 791typedef double tstamp;
490 792
491// return current time as timestampe 793// return current time as timestamp
492tstamp now (); 794tstamp now ();
493 795
494int similar_direction (int a, int b); 796int similar_direction (int a, int b);
495 797
496// like printf, but returns a std::string 798// like v?sprintf, but returns a "static" buffer
497const std::string format (const char *format, ...); 799char *vformat (const char *format, va_list ap);
800char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
498 801
802// safety-check player input which will become object->msg
803bool msg_is_safe (const char *msg);
804
805/////////////////////////////////////////////////////////////////////////////
806// threads, very very thin wrappers around pthreads
807
808struct thread
809{
810 pthread_t id;
811
812 void start (void *(*start_routine)(void *), void *arg = 0);
813
814 void cancel ()
815 {
816 pthread_cancel (id);
817 }
818
819 void *join ()
820 {
821 void *ret;
822
823 if (pthread_join (id, &ret))
824 cleanup ("pthread_join failed", 1);
825
826 return ret;
827 }
828};
829
830// note that mutexes are not classes
831typedef pthread_mutex_t smutex;
832
833#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
834 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
835#else
836 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
499#endif 837#endif
500 838
839#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
840#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
841#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
842
843typedef pthread_cond_t scond;
844
845#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
846#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
847#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
848#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
849
850#endif
851

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines