ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.67 by root, Fri Apr 11 21:09:53 2008 UTC vs.
Revision 1.130 by root, Wed Dec 5 19:03:27 2018 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Deliantra is free software: you can redistribute it and/or modify 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * it under the terms of the GNU General Public License as published by 8 * the terms of the Affero GNU General Public License as published by the
8 * the Free Software Foundation, either version 3 of the License, or 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * (at your option) any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
18 * 20 *
19 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 22 */
21 23
22#ifndef UTIL_H__ 24#ifndef UTIL_H__
23#define UTIL_H__ 25#define UTIL_H__
24 26
25#define DEBUG_SALLOC 0 27#include <compiler.h>
26#define PREFER_MALLOC 0
27 28
28#if __GNUC__ >= 3 29#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29# define is_constant(c) __builtin_constant_p (c) 30#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30# define expect(expr,value) __builtin_expect ((expr),(value)) 31#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32#else
33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
36#endif
37
38#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
39# define decltype(x) typeof(x)
40#endif
41
42// put into ifs if you are very sure that the expression
43// is mostly true or mosty false. note that these return
44// booleans, not the expression.
45#define expect_false(expr) expect ((expr) != 0, 0)
46#define expect_true(expr) expect ((expr) != 0, 1)
47 32
48#include <pthread.h> 33#include <pthread.h>
49 34
50#include <cstddef> 35#include <cstddef>
51#include <cmath> 36#include <cmath>
52#include <new> 37#include <new>
53#include <vector> 38#include <vector>
54 39
55#include <glib.h> 40#include <glib.h>
41
42#include <flat_hash_map.hpp>
56 43
57#include <shstr.h> 44#include <shstr.h>
58#include <traits.h> 45#include <traits.h>
59 46
60#if DEBUG_SALLOC 47#if DEBUG_SALLOC
65void *g_slice_alloc0 (unsigned long size); 52void *g_slice_alloc0 (unsigned long size);
66void g_slice_free1 (unsigned long size, void *ptr); 53void g_slice_free1 (unsigned long size, void *ptr);
67#elif PREFER_MALLOC 54#elif PREFER_MALLOC
68# define g_slice_alloc0(s) calloc (1, (s)) 55# define g_slice_alloc0(s) calloc (1, (s))
69# define g_slice_alloc(s) malloc ((s)) 56# define g_slice_alloc(s) malloc ((s))
70# define g_slice_free1(s,p) free ((s)) 57# define g_slice_free1(s,p) free ((p))
71#endif 58#endif
72 59
73// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
74#define auto(var,expr) decltype(expr) var = (expr)
75
76// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
77// that is in scope for the next statement only 61// that is in scope for the next statement only
78// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
79// (note: works great for pointers) 63// (note: works great for pointers)
80// most ugly macro I ever wrote 64// most ugly macro I ever wrote
81#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
86 70
87// in range excluding end 71// in range excluding end
88#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
89 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
90 74
91void cleanup (const char *cause, bool make_core = false); 75ecb_cold void cleanup (const char *cause, bool make_core = false);
92void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
93 77
94// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
95// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
96template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
97template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
98template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
99 87
100template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
101 89
102template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); } 90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
103template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); } 91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
104 92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
103
104// sign0 returns -1, 0 or +1
105template<typename T>
106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
111
112// div* only work correctly for div > 0
113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
114template<typename T> static inline T div (T val, T div)
115{
116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
122// div, round-up
123template<typename T> static inline T div_ru (T val, T div)
124{
125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126}
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div)
129{
130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131}
132
133// lerp* only work correctly for min_in < max_in
134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
105template<typename T> 135template<typename T>
106static inline T 136static inline T
107lerp (T val, T min_in, T max_in, T min_out, T max_out) 137lerp (T val, T min_in, T max_in, T min_out, T max_out)
108{ 138{
109 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140}
141
142// lerp, round-down
143template<typename T>
144static inline T
145lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-up
151template<typename T>
152static inline T
153lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
110} 156}
111 157
112// lots of stuff taken from FXT 158// lots of stuff taken from FXT
113 159
114/* Rotate right. This is used in various places for checksumming */ 160/* Rotate right. This is used in various places for checksumming */
152 int32_t d = b - a; 198 int32_t d = b - a;
153 d &= d >> 31; 199 d &= d >> 31;
154 return b - d; 200 return b - d;
155} 201}
156 202
157// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
158// on modern cpus 204// on modern cpus
159inline int 205inline int
160isqrt (int n) 206isqrt (int n)
161{ 207{
162 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
163} 223}
164 224
165// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
166#if 0 226#if 0
167// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
168#else 228#else
169// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
170#endif 230#endif
171inline int 231inline int
172idistance (int dx, int dy) 232idistance (int dx, int dy)
173{ 233{
174 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
175 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
176 236
177#if 0 237#if 0
178 return dx_ > dy_ 238 return dx_ > dy_
181#else 241#else
182 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
183#endif 243#endif
184} 244}
185 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
186/* 266/*
187 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
188 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
189 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
190 */ 270 */
192absdir (int d) 272absdir (int d)
193{ 273{
194 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
195} 275}
196 276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
197extern ssize_t slice_alloc; // statistics 281extern ssize_t slice_alloc; // statistics
198 282
199void *salloc_ (int n) throw (std::bad_alloc); 283void *salloc_ (int n);
200void *salloc_ (int n, void *src) throw (std::bad_alloc); 284void *salloc_ (int n, void *src);
201 285
202// strictly the same as g_slice_alloc, but never returns 0 286// strictly the same as g_slice_alloc, but never returns 0
203template<typename T> 287template<typename T>
204inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); } 288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
205 289
206// also copies src into the new area, like "memdup" 290// also copies src into the new area, like "memdup"
207// if src is 0, clears the memory 291// if src is 0, clears the memory
208template<typename T> 292template<typename T>
209inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); } 293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
210 294
211// clears the memory 295// clears the memory
212template<typename T> 296template<typename T>
213inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); } 297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
214 298
215// for symmetry 299// for symmetry
216template<typename T> 300template<typename T>
217inline void sfree (T *ptr, int n = 1) throw () 301inline void sfree (T *ptr, int n = 1) noexcept
218{ 302{
219 if (expect_true (ptr)) 303 if (ecb_expect_true (ptr))
220 { 304 {
221 slice_alloc -= n * sizeof (T); 305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
222 g_slice_free1 (n * sizeof (T), (void *)ptr); 307 g_slice_free1 (n * sizeof (T), (void *)ptr);
223 assert (slice_alloc >= 0);//D
224 } 308 }
309}
310
311// nulls the pointer
312template<typename T>
313inline void sfree0 (T *&ptr, int n = 1) noexcept
314{
315 sfree<T> (ptr, n);
316 ptr = 0;
225} 317}
226 318
227// makes dynamically allocated objects zero-initialised 319// makes dynamically allocated objects zero-initialised
228struct zero_initialised 320struct zero_initialised
229{ 321{
239 } 331 }
240 332
241 void *operator new[] (size_t s) 333 void *operator new[] (size_t s)
242 { 334 {
243 return salloc0<char> (s); 335 return salloc0<char> (s);
336 }
337
338 void operator delete (void *p, size_t s)
339 {
340 sfree ((char *)p, s);
341 }
342
343 void operator delete[] (void *p, size_t s)
344 {
345 sfree ((char *)p, s);
346 }
347};
348
349// makes dynamically allocated objects zero-initialised
350struct slice_allocated
351{
352 void *operator new (size_t s, void *p)
353 {
354 return p;
355 }
356
357 void *operator new (size_t s)
358 {
359 return salloc<char> (s);
360 }
361
362 void *operator new[] (size_t s)
363 {
364 return salloc<char> (s);
244 } 365 }
245 366
246 void operator delete (void *p, size_t s) 367 void operator delete (void *p, size_t s)
247 { 368 {
248 sfree ((char *)p, s); 369 sfree ((char *)p, s);
265 typedef const Tp *const_pointer; 386 typedef const Tp *const_pointer;
266 typedef Tp &reference; 387 typedef Tp &reference;
267 typedef const Tp &const_reference; 388 typedef const Tp &const_reference;
268 typedef Tp value_type; 389 typedef Tp value_type;
269 390
270 template <class U> 391 template <class U>
271 struct rebind 392 struct rebind
272 { 393 {
273 typedef slice_allocator<U> other; 394 typedef slice_allocator<U> other;
274 }; 395 };
275 396
276 slice_allocator () throw () { } 397 slice_allocator () noexcept { }
277 slice_allocator (const slice_allocator &) throw () { } 398 slice_allocator (const slice_allocator &) noexcept { }
278 template<typename Tp2> 399 template<typename Tp2>
279 slice_allocator (const slice_allocator<Tp2> &) throw () { } 400 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
280 401
281 ~slice_allocator () { } 402 ~slice_allocator () { }
282 403
283 pointer address (reference x) const { return &x; } 404 pointer address (reference x) const { return &x; }
284 const_pointer address (const_reference x) const { return &x; } 405 const_pointer address (const_reference x) const { return &x; }
291 void deallocate (pointer p, size_type n) 412 void deallocate (pointer p, size_type n)
292 { 413 {
293 sfree<Tp> (p, n); 414 sfree<Tp> (p, n);
294 } 415 }
295 416
296 size_type max_size () const throw () 417 size_type max_size () const noexcept
297 { 418 {
298 return size_t (-1) / sizeof (Tp); 419 return size_t (-1) / sizeof (Tp);
299 } 420 }
300 421
301 void construct (pointer p, const Tp &val) 422 void construct (pointer p, const Tp &val)
307 { 428 {
308 p->~Tp (); 429 p->~Tp ();
309 } 430 }
310}; 431};
311 432
312// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 433// basically a memory area, but refcounted
313// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 434struct refcnt_buf
314// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
315struct tausworthe_random_generator
316{ 435{
317 // generator 436 char *data;
318 uint32_t state [4];
319 437
320 void operator =(const tausworthe_random_generator &src) 438 refcnt_buf (size_t size = 0);
321 { 439 refcnt_buf (void *data, size_t size);
322 state [0] = src.state [0];
323 state [1] = src.state [1];
324 state [2] = src.state [2];
325 state [3] = src.state [3];
326 }
327 440
328 void seed (uint32_t seed); 441 refcnt_buf (const refcnt_buf &src)
329 uint32_t next ();
330
331 // uniform distribution
332 uint32_t operator ()(uint32_t num)
333 { 442 {
334 return is_constant (num) 443 data = src.data;
335 ? (next () * (uint64_t)num) >> 32U 444 inc ();
336 : get_range (num);
337 } 445 }
338 446
339 // return a number within (min .. max) 447 ~refcnt_buf ();
340 int operator () (int r_min, int r_max)
341 {
342 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
343 ? r_min + operator ()(r_max - r_min + 1)
344 : get_range (r_min, r_max);
345 }
346 448
347 double operator ()() 449 refcnt_buf &operator =(const refcnt_buf &src);
450
451 operator char *()
348 { 452 {
349 return this->next () / (double)0xFFFFFFFFU; 453 return data;
454 }
455
456 size_t size () const
457 {
458 return _size ();
350 } 459 }
351 460
352protected: 461protected:
353 uint32_t get_range (uint32_t r_max); 462 enum {
354 int get_range (int r_min, int r_max); 463 overhead = sizeof (uint32_t) * 2
355}; 464 };
356 465
357typedef tausworthe_random_generator rand_gen; 466 uint32_t &_size () const
467 {
468 return ((unsigned int *)data)[-2];
469 }
358 470
359extern rand_gen rndm; 471 uint32_t &_refcnt () const
472 {
473 return ((unsigned int *)data)[-1];
474 }
475
476 void _alloc (uint32_t size)
477 {
478 data = ((char *)salloc<char> (size + overhead)) + overhead;
479 _size () = size;
480 _refcnt () = 1;
481 }
482
483 void _dealloc ();
484
485 void inc ()
486 {
487 ++_refcnt ();
488 }
489
490 void dec ()
491 {
492 if (!--_refcnt ())
493 _dealloc ();
494 }
495};
360 496
361INTERFACE_CLASS (attachable) 497INTERFACE_CLASS (attachable)
362struct refcnt_base 498struct refcnt_base
363{ 499{
364 typedef int refcnt_t; 500 typedef int refcnt_t;
379 // p if not null 515 // p if not null
380 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; } 516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
381 517
382 void refcnt_dec () 518 void refcnt_dec ()
383 { 519 {
384 if (!is_constant (p)) 520 if (!ecb_is_constant (p))
385 --*refcnt_ref (); 521 --*refcnt_ref ();
386 else if (p) 522 else if (p)
387 --p->refcnt; 523 --p->refcnt;
388 } 524 }
389 525
390 void refcnt_inc () 526 void refcnt_inc ()
391 { 527 {
392 if (!is_constant (p)) 528 if (!ecb_is_constant (p))
393 ++*refcnt_ref (); 529 ++*refcnt_ref ();
394 else if (p) 530 else if (p)
395 ++p->refcnt; 531 ++p->refcnt;
396 } 532 }
397 533
426typedef refptr<maptile> maptile_ptr; 562typedef refptr<maptile> maptile_ptr;
427typedef refptr<object> object_ptr; 563typedef refptr<object> object_ptr;
428typedef refptr<archetype> arch_ptr; 564typedef refptr<archetype> arch_ptr;
429typedef refptr<client> client_ptr; 565typedef refptr<client> client_ptr;
430typedef refptr<player> player_ptr; 566typedef refptr<player> player_ptr;
567typedef refptr<region> region_ptr;
568
569#define STRHSH_NULL 2166136261
570
571static inline uint32_t
572strhsh (const char *s)
573{
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrently with the looping logic.
579 // we modify the hash a bit to improve its distribution
580 uint32_t hash = STRHSH_NULL;
581
582 while (*s)
583 hash = (hash ^ *s++) * 16777619U;
584
585 return hash ^ (hash >> 16);
586}
587
588static inline uint32_t
589memhsh (const char *s, size_t len)
590{
591 uint32_t hash = STRHSH_NULL;
592
593 while (len--)
594 hash = (hash ^ *s++) * 16777619U;
595
596 return hash;
597}
431 598
432struct str_hash 599struct str_hash
433{ 600{
434 std::size_t operator ()(const char *s) const 601 std::size_t operator ()(const char *s) const
435 { 602 {
436 unsigned long hash = 0;
437
438 /* use the one-at-a-time hash function, which supposedly is
439 * better than the djb2-like one used by perl5.005, but
440 * certainly is better then the bug used here before.
441 * see http://burtleburtle.net/bob/hash/doobs.html
442 */
443 while (*s)
444 {
445 hash += *s++;
446 hash += hash << 10;
447 hash ^= hash >> 6;
448 }
449
450 hash += hash << 3;
451 hash ^= hash >> 11;
452 hash += hash << 15;
453
454 return hash; 603 return strhsh (s);
455 } 604 }
605
606 std::size_t operator ()(const shstr &s) const
607 {
608 return strhsh (s);
609 }
610
611 typedef ska::power_of_two_hash_policy hash_policy;
456}; 612};
457 613
458struct str_equal 614struct str_equal
459{ 615{
460 bool operator ()(const char *a, const char *b) const 616 bool operator ()(const char *a, const char *b) const
486 } 642 }
487}; 643};
488 644
489// This container blends advantages of linked lists 645// This container blends advantages of linked lists
490// (efficiency) with vectors (random access) by 646// (efficiency) with vectors (random access) by
491// by using an unordered vector and storing the vector 647// using an unordered vector and storing the vector
492// index inside the object. 648// index inside the object.
493// 649//
494// + memory-efficient on most 64 bit archs 650// + memory-efficient on most 64 bit archs
495// + O(1) insert/remove 651// + O(1) insert/remove
496// + free unique (but varying) id for inserted objects 652// + free unique (but varying) id for inserted objects
533 insert (&obj); 689 insert (&obj);
534 } 690 }
535 691
536 void erase (T *obj) 692 void erase (T *obj)
537 { 693 {
538 unsigned int pos = obj->*indexmember; 694 object_vector_index pos = obj->*indexmember;
539 obj->*indexmember = 0; 695 obj->*indexmember = 0;
540 696
541 if (pos < this->size ()) 697 if (pos < this->size ())
542 { 698 {
543 (*this)[pos - 1] = (*this)[this->size () - 1]; 699 (*this)[pos - 1] = (*this)[this->size () - 1];
551 { 707 {
552 erase (&obj); 708 erase (&obj);
553 } 709 }
554}; 710};
555 711
712/////////////////////////////////////////////////////////////////////////////
713
714// something like a vector or stack, but without
715// out of bounds checking
716template<typename T>
717struct fixed_stack
718{
719 T *data;
720 int size;
721 int max;
722
723 fixed_stack ()
724 : size (0), data (0)
725 {
726 }
727
728 fixed_stack (int max)
729 : size (0), max (max)
730 {
731 data = salloc<T> (max);
732 }
733
734 void reset (int new_max)
735 {
736 sfree (data, max);
737 size = 0;
738 max = new_max;
739 data = salloc<T> (max);
740 }
741
742 void free ()
743 {
744 sfree (data, max);
745 data = 0;
746 }
747
748 ~fixed_stack ()
749 {
750 sfree (data, max);
751 }
752
753 T &operator[](int idx)
754 {
755 return data [idx];
756 }
757
758 void push (T v)
759 {
760 data [size++] = v;
761 }
762
763 T &pop ()
764 {
765 return data [--size];
766 }
767
768 T remove (int idx)
769 {
770 T v = data [idx];
771
772 data [idx] = data [--size];
773
774 return v;
775 }
776};
777
778/////////////////////////////////////////////////////////////////////////////
779
556// basically does what strncpy should do, but appends "..." to strings exceeding length 780// basically does what strncpy should do, but appends "..." to strings exceeding length
781// returns the number of bytes actually used (including \0)
557void assign (char *dst, const char *src, int maxlen); 782int assign (char *dst, const char *src, int maxsize);
558 783
559// type-safe version of assign 784// type-safe version of assign
560template<int N> 785template<int N>
561inline void assign (char (&dst)[N], const char *src) 786inline int assign (char (&dst)[N], const char *src)
562{ 787{
563 assign ((char *)&dst, src, N); 788 return assign ((char *)&dst, src, N);
564} 789}
565 790
566typedef double tstamp; 791typedef double tstamp;
567 792
568// return current time as timestamp 793// return current time as timestamp
569tstamp now (); 794tstamp now ();
570 795
571int similar_direction (int a, int b); 796int similar_direction (int a, int b);
572 797
573// like sprintf, but returns a "static" buffer 798// like v?sprintf, but returns a "static" buffer
574const char *format (const char *format, ...); 799char *vformat (const char *format, va_list ap);
800char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
801
802// safety-check player input which will become object->msg
803bool msg_is_safe (const char *msg);
575 804
576///////////////////////////////////////////////////////////////////////////// 805/////////////////////////////////////////////////////////////////////////////
577// threads, very very thin wrappers around pthreads 806// threads, very very thin wrappers around pthreads
578 807
579struct thread 808struct thread
606#else 835#else
607 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER 836 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
608#endif 837#endif
609 838
610#define SMUTEX(name) smutex name = SMUTEX_INITIALISER 839#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
611#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name)) 840#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
612#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name)) 841#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
613 842
843typedef pthread_cond_t scond;
844
845#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
846#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
847#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
848#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
849
614#endif 850#endif
615 851

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines