ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.9 by root, Tue Sep 12 18:15:34 2006 UTC vs.
Revision 1.130 by root, Wed Dec 5 19:03:27 2018 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 *
7 * Deliantra is free software: you can redistribute it and/or modify it under
8 * the terms of the Affero GNU General Public License as published by the
9 * Free Software Foundation, either version 3 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the Affero GNU General Public License
18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
1#ifndef UTIL_H__ 24#ifndef UTIL_H__
2#define UTIL_H__ 25#define UTIL_H__
3 26
4#if __GNUC__ >= 3 27#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 28
29#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
30#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
31#define PREFER_MALLOC 0 // use malloc and not the slice allocator
32
33#include <pthread.h>
34
35#include <cstddef>
36#include <cmath>
37#include <new>
38#include <vector>
39
40#include <glib.h>
41
42#include <flat_hash_map.hpp>
43
44#include <shstr.h>
45#include <traits.h>
46
47#if DEBUG_SALLOC
48# define g_slice_alloc0(s) debug_slice_alloc0(s)
49# define g_slice_alloc(s) debug_slice_alloc(s)
50# define g_slice_free1(s,p) debug_slice_free1(s,p)
51void *g_slice_alloc (unsigned long size);
52void *g_slice_alloc0 (unsigned long size);
53void g_slice_free1 (unsigned long size, void *ptr);
54#elif PREFER_MALLOC
55# define g_slice_alloc0(s) calloc (1, (s))
56# define g_slice_alloc(s) malloc ((s))
57# define g_slice_free1(s,p) free ((p))
58#endif
59
60// very ugly macro that basically declares and initialises a variable
61// that is in scope for the next statement only
62// works only for stuff that can be assigned 0 and converts to false
63// (note: works great for pointers)
64// most ugly macro I ever wrote
65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66
67// in range including end
68#define IN_RANGE_INC(val,beg,end) \
69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70
71// in range excluding end
72#define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74
75ecb_cold void cleanup (const char *cause, bool make_core = false);
76ecb_cold void fork_abort (const char *msg);
77
78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
79// as a is often a constant while b is the variable. it is still a bug, though.
80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
103
104// sign0 returns -1, 0 or +1
105template<typename T>
106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
111
112// div* only work correctly for div > 0
113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
114template<typename T> static inline T div (T val, T div)
115{
116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
122// div, round-up
123template<typename T> static inline T div_ru (T val, T div)
124{
125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126}
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div)
129{
130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131}
132
133// lerp* only work correctly for min_in < max_in
134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
135template<typename T>
136static inline T
137lerp (T val, T min_in, T max_in, T min_out, T max_out)
138{
139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140}
141
142// lerp, round-down
143template<typename T>
144static inline T
145lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-up
151template<typename T>
152static inline T
153lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156}
157
158// lots of stuff taken from FXT
159
160/* Rotate right. This is used in various places for checksumming */
161//TODO: that sucks, use a better checksum algo
162static inline uint32_t
163rotate_right (uint32_t c, uint32_t count = 1)
164{
165 return (c << (32 - count)) | (c >> count);
166}
167
168static inline uint32_t
169rotate_left (uint32_t c, uint32_t count = 1)
170{
171 return (c >> (32 - count)) | (c << count);
172}
173
174// Return abs(a-b)
175// Both a and b must not have the most significant bit set
176static inline uint32_t
177upos_abs_diff (uint32_t a, uint32_t b)
178{
179 long d1 = b - a;
180 long d2 = (d1 & (d1 >> 31)) << 1;
181
182 return d1 - d2; // == (b - d) - (a + d);
183}
184
185// Both a and b must not have the most significant bit set
186static inline uint32_t
187upos_min (uint32_t a, uint32_t b)
188{
189 int32_t d = b - a;
190 d &= d >> 31;
191 return a + d;
192}
193
194// Both a and b must not have the most significant bit set
195static inline uint32_t
196upos_max (uint32_t a, uint32_t b)
197{
198 int32_t d = b - a;
199 d &= d >> 31;
200 return b - d;
201}
202
203// this is much faster than crossfire's original algorithm
204// on modern cpus
205inline int
206isqrt (int n)
207{
208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
223}
224
225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
226#if 0
227// and has a max. error of 6 in the range -100..+100.
6#else 228#else
7# define is_constant(c) 0 229// and has a max. error of 9 in the range -100..+100.
8#endif 230#endif
231inline int
232idistance (int dx, int dy)
233{
234 unsigned int dx_ = abs (dx);
235 unsigned int dy_ = abs (dy);
236
237#if 0
238 return dx_ > dy_
239 ? (dx_ * 61685 + dy_ * 26870) >> 16
240 : (dy_ * 61685 + dx_ * 26870) >> 16;
241#else
242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
243#endif
244}
245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
266/*
267 * absdir(int): Returns a number between 1 and 8, which represent
268 * the "absolute" direction of a number (it actually takes care of
269 * "overflow" in previous calculations of a direction).
270 */
271inline int
272absdir (int d)
273{
274 return ((d - 1) & 7) + 1;
275}
276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
281extern ssize_t slice_alloc; // statistics
282
283void *salloc_ (int n);
284void *salloc_ (int n, void *src);
285
286// strictly the same as g_slice_alloc, but never returns 0
287template<typename T>
288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
289
290// also copies src into the new area, like "memdup"
291// if src is 0, clears the memory
292template<typename T>
293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294
295// clears the memory
296template<typename T>
297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
298
299// for symmetry
300template<typename T>
301inline void sfree (T *ptr, int n = 1) noexcept
302{
303 if (ecb_expect_true (ptr))
304 {
305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 }
309}
310
311// nulls the pointer
312template<typename T>
313inline void sfree0 (T *&ptr, int n = 1) noexcept
314{
315 sfree<T> (ptr, n);
316 ptr = 0;
317}
9 318
10// makes dynamically allocated objects zero-initialised 319// makes dynamically allocated objects zero-initialised
11struct zero_initialised 320struct zero_initialised
12{ 321{
13 void *operator new (size_t s, void *); 322 void *operator new (size_t s, void *p)
323 {
324 memset (p, 0, s);
325 return p;
326 }
327
14 void *operator new (size_t s); 328 void *operator new (size_t s)
329 {
330 return salloc0<char> (s);
331 }
332
15 void *operator new [] (size_t s); 333 void *operator new[] (size_t s)
334 {
335 return salloc0<char> (s);
336 }
337
16 void operator delete (void *p, size_t s); 338 void operator delete (void *p, size_t s)
339 {
340 sfree ((char *)p, s);
341 }
342
17 void operator delete [] (void *p, size_t s); 343 void operator delete[] (void *p, size_t s)
344 {
345 sfree ((char *)p, s);
346 }
18}; 347};
19 348
349// makes dynamically allocated objects zero-initialised
350struct slice_allocated
351{
352 void *operator new (size_t s, void *p)
353 {
354 return p;
355 }
356
357 void *operator new (size_t s)
358 {
359 return salloc<char> (s);
360 }
361
362 void *operator new[] (size_t s)
363 {
364 return salloc<char> (s);
365 }
366
367 void operator delete (void *p, size_t s)
368 {
369 sfree ((char *)p, s);
370 }
371
372 void operator delete[] (void *p, size_t s)
373 {
374 sfree ((char *)p, s);
375 }
376};
377
378// a STL-compatible allocator that uses g_slice
379// boy, this is verbose
380template<typename Tp>
381struct slice_allocator
382{
383 typedef size_t size_type;
384 typedef ptrdiff_t difference_type;
385 typedef Tp *pointer;
386 typedef const Tp *const_pointer;
387 typedef Tp &reference;
388 typedef const Tp &const_reference;
389 typedef Tp value_type;
390
391 template <class U>
392 struct rebind
393 {
394 typedef slice_allocator<U> other;
395 };
396
397 slice_allocator () noexcept { }
398 slice_allocator (const slice_allocator &) noexcept { }
399 template<typename Tp2>
400 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
401
402 ~slice_allocator () { }
403
404 pointer address (reference x) const { return &x; }
405 const_pointer address (const_reference x) const { return &x; }
406
407 pointer allocate (size_type n, const_pointer = 0)
408 {
409 return salloc<Tp> (n);
410 }
411
412 void deallocate (pointer p, size_type n)
413 {
414 sfree<Tp> (p, n);
415 }
416
417 size_type max_size () const noexcept
418 {
419 return size_t (-1) / sizeof (Tp);
420 }
421
422 void construct (pointer p, const Tp &val)
423 {
424 ::new (p) Tp (val);
425 }
426
427 void destroy (pointer p)
428 {
429 p->~Tp ();
430 }
431};
432
433// basically a memory area, but refcounted
434struct refcnt_buf
435{
436 char *data;
437
438 refcnt_buf (size_t size = 0);
439 refcnt_buf (void *data, size_t size);
440
441 refcnt_buf (const refcnt_buf &src)
442 {
443 data = src.data;
444 inc ();
445 }
446
447 ~refcnt_buf ();
448
449 refcnt_buf &operator =(const refcnt_buf &src);
450
451 operator char *()
452 {
453 return data;
454 }
455
456 size_t size () const
457 {
458 return _size ();
459 }
460
461protected:
462 enum {
463 overhead = sizeof (uint32_t) * 2
464 };
465
466 uint32_t &_size () const
467 {
468 return ((unsigned int *)data)[-2];
469 }
470
471 uint32_t &_refcnt () const
472 {
473 return ((unsigned int *)data)[-1];
474 }
475
476 void _alloc (uint32_t size)
477 {
478 data = ((char *)salloc<char> (size + overhead)) + overhead;
479 _size () = size;
480 _refcnt () = 1;
481 }
482
483 void _dealloc ();
484
485 void inc ()
486 {
487 ++_refcnt ();
488 }
489
490 void dec ()
491 {
492 if (!--_refcnt ())
493 _dealloc ();
494 }
495};
496
497INTERFACE_CLASS (attachable)
20struct refcounted 498struct refcnt_base
21{ 499{
22 mutable int refcnt; 500 typedef int refcnt_t;
23 refcounted () : refcnt (0) { } 501 mutable refcnt_t ACC (RW, refcnt);
502
24 void refcnt_inc () { ++refcnt; } 503 MTH void refcnt_inc () const { ++refcnt; }
25 void refcnt_dec () { --refcnt; 504 MTH void refcnt_dec () const { --refcnt; }
26 if (refcnt < 0)abort();}//D 505
506 refcnt_base () : refcnt (0) { }
27}; 507};
508
509// to avoid branches with more advanced compilers
510extern refcnt_base::refcnt_t refcnt_dummy;
28 511
29template<class T> 512template<class T>
30struct refptr 513struct refptr
31{ 514{
515 // p if not null
516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
517
518 void refcnt_dec ()
519 {
520 if (!ecb_is_constant (p))
521 --*refcnt_ref ();
522 else if (p)
523 --p->refcnt;
524 }
525
526 void refcnt_inc ()
527 {
528 if (!ecb_is_constant (p))
529 ++*refcnt_ref ();
530 else if (p)
531 ++p->refcnt;
532 }
533
32 T *p; 534 T *p;
33 535
34 refptr () : p(0) { } 536 refptr () : p(0) { }
35 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 537 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
36 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 538 refptr (T *p) : p(p) { refcnt_inc (); }
37 ~refptr () { if (p) p->refcnt_dec (); } 539 ~refptr () { refcnt_dec (); }
38 540
39 const refptr<T> &operator =(T *o) 541 const refptr<T> &operator =(T *o)
40 { 542 {
543 // if decrementing ever destroys we need to reverse the order here
41 if (p) p->refcnt_dec (); 544 refcnt_dec ();
42 p = o; 545 p = o;
43 if (p) p->refcnt_inc (); 546 refcnt_inc ();
44
45 return *this; 547 return *this;
46 } 548 }
47 549
48 const refptr<T> &operator =(const refptr<T> o) 550 const refptr<T> &operator =(const refptr<T> &o)
49 { 551 {
50 *this = o.p; 552 *this = o.p;
51 return *this; 553 return *this;
52 } 554 }
53 555
54 T &operator * () const { return *p; } 556 T &operator * () const { return *p; }
55 T *operator ->() const { return p; } 557 T *operator ->() const { return p; }
56 558
57 operator T *() const { return p; } 559 operator T *() const { return p; }
58}; 560};
59 561
562typedef refptr<maptile> maptile_ptr;
563typedef refptr<object> object_ptr;
564typedef refptr<archetype> arch_ptr;
565typedef refptr<client> client_ptr;
566typedef refptr<player> player_ptr;
567typedef refptr<region> region_ptr;
568
569#define STRHSH_NULL 2166136261
570
571static inline uint32_t
572strhsh (const char *s)
573{
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrently with the looping logic.
579 // we modify the hash a bit to improve its distribution
580 uint32_t hash = STRHSH_NULL;
581
582 while (*s)
583 hash = (hash ^ *s++) * 16777619U;
584
585 return hash ^ (hash >> 16);
586}
587
588static inline uint32_t
589memhsh (const char *s, size_t len)
590{
591 uint32_t hash = STRHSH_NULL;
592
593 while (len--)
594 hash = (hash ^ *s++) * 16777619U;
595
596 return hash;
597}
598
60struct str_hash 599struct str_hash
61{ 600{
62 std::size_t operator ()(const char *s) const 601 std::size_t operator ()(const char *s) const
63 { 602 {
64 unsigned long hash = 0;
65
66 /* use the one-at-a-time hash function, which supposedly is
67 * better than the djb2-like one used by perl5.005, but
68 * certainly is better then the bug used here before.
69 * see http://burtleburtle.net/bob/hash/doobs.html
70 */
71 while (*s)
72 {
73 hash += *s++;
74 hash += hash << 10;
75 hash ^= hash >> 6;
76 }
77
78 hash += hash << 3;
79 hash ^= hash >> 11;
80 hash += hash << 15;
81
82 return hash; 603 return strhsh (s);
83 } 604 }
605
606 std::size_t operator ()(const shstr &s) const
607 {
608 return strhsh (s);
609 }
610
611 typedef ska::power_of_two_hash_policy hash_policy;
84}; 612};
85 613
86struct str_equal 614struct str_equal
87{ 615{
88 bool operator ()(const char *a, const char *b) const 616 bool operator ()(const char *a, const char *b) const
89 { 617 {
90 return !strcmp (a, b); 618 return !strcmp (a, b);
91 } 619 }
92}; 620};
93 621
94#include <vector> 622// Mostly the same as std::vector, but insert/erase can reorder
95 623// the elements, making append(=insert)/remove O(1) instead of O(n).
624//
625// NOTE: only some forms of erase are available
96template<class obj> 626template<class T>
97struct unordered_vector : std::vector<obj> 627struct unordered_vector : std::vector<T, slice_allocator<T> >
98{ 628{
99 typedef typename std::vector<obj>::iterator iterator; 629 typedef typename unordered_vector::iterator iterator;
100 630
101 void erase (unsigned int pos) 631 void erase (unsigned int pos)
102 { 632 {
103 if (pos < this->size () - 1) 633 if (pos < this->size () - 1)
104 (*this)[pos] = (*this)[this->size () - 1]; 634 (*this)[pos] = (*this)[this->size () - 1];
110 { 640 {
111 erase ((unsigned int )(i - this->begin ())); 641 erase ((unsigned int )(i - this->begin ()));
112 } 642 }
113}; 643};
114 644
115template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 645// This container blends advantages of linked lists
116template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 646// (efficiency) with vectors (random access) by
117template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 647// using an unordered vector and storing the vector
648// index inside the object.
649//
650// + memory-efficient on most 64 bit archs
651// + O(1) insert/remove
652// + free unique (but varying) id for inserted objects
653// + cache-friendly iteration
654// - only works for pointers to structs
655//
656// NOTE: only some forms of erase/insert are available
657typedef int object_vector_index;
118 658
119template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 659template<class T, object_vector_index T::*indexmember>
660struct object_vector : std::vector<T *, slice_allocator<T *> >
661{
662 typedef typename object_vector::iterator iterator;
120 663
121// basically does what strncpy should do 664 bool contains (const T *obj) const
665 {
666 return obj->*indexmember;
667 }
668
669 iterator find (const T *obj)
670 {
671 return obj->*indexmember
672 ? this->begin () + obj->*indexmember - 1
673 : this->end ();
674 }
675
676 void push_back (T *obj)
677 {
678 std::vector<T *, slice_allocator<T *> >::push_back (obj);
679 obj->*indexmember = this->size ();
680 }
681
682 void insert (T *obj)
683 {
684 push_back (obj);
685 }
686
687 void insert (T &obj)
688 {
689 insert (&obj);
690 }
691
692 void erase (T *obj)
693 {
694 object_vector_index pos = obj->*indexmember;
695 obj->*indexmember = 0;
696
697 if (pos < this->size ())
698 {
699 (*this)[pos - 1] = (*this)[this->size () - 1];
700 (*this)[pos - 1]->*indexmember = pos;
701 }
702
703 this->pop_back ();
704 }
705
706 void erase (T &obj)
707 {
708 erase (&obj);
709 }
710};
711
712/////////////////////////////////////////////////////////////////////////////
713
714// something like a vector or stack, but without
715// out of bounds checking
716template<typename T>
717struct fixed_stack
718{
719 T *data;
720 int size;
721 int max;
722
723 fixed_stack ()
724 : size (0), data (0)
725 {
726 }
727
728 fixed_stack (int max)
729 : size (0), max (max)
730 {
731 data = salloc<T> (max);
732 }
733
734 void reset (int new_max)
735 {
736 sfree (data, max);
737 size = 0;
738 max = new_max;
739 data = salloc<T> (max);
740 }
741
742 void free ()
743 {
744 sfree (data, max);
745 data = 0;
746 }
747
748 ~fixed_stack ()
749 {
750 sfree (data, max);
751 }
752
753 T &operator[](int idx)
754 {
755 return data [idx];
756 }
757
758 void push (T v)
759 {
760 data [size++] = v;
761 }
762
763 T &pop ()
764 {
765 return data [--size];
766 }
767
768 T remove (int idx)
769 {
770 T v = data [idx];
771
772 data [idx] = data [--size];
773
774 return v;
775 }
776};
777
778/////////////////////////////////////////////////////////////////////////////
779
780// basically does what strncpy should do, but appends "..." to strings exceeding length
781// returns the number of bytes actually used (including \0)
782int assign (char *dst, const char *src, int maxsize);
783
784// type-safe version of assign
122template<int N> 785template<int N>
123inline void assign (char (&dst)[N], const char *src) 786inline int assign (char (&dst)[N], const char *src)
124{ 787{
125 // should be optimised at some point, maybe should also add "..." 788 return assign ((char *)&dst, src, N);
126 // when buffer is too small.
127 snprintf (dst, N, "%s", src);
128} 789}
129 790
791typedef double tstamp;
792
793// return current time as timestamp
794tstamp now ();
795
796int similar_direction (int a, int b);
797
798// like v?sprintf, but returns a "static" buffer
799char *vformat (const char *format, va_list ap);
800char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
801
802// safety-check player input which will become object->msg
803bool msg_is_safe (const char *msg);
804
805/////////////////////////////////////////////////////////////////////////////
806// threads, very very thin wrappers around pthreads
807
808struct thread
809{
810 pthread_t id;
811
812 void start (void *(*start_routine)(void *), void *arg = 0);
813
814 void cancel ()
815 {
816 pthread_cancel (id);
817 }
818
819 void *join ()
820 {
821 void *ret;
822
823 if (pthread_join (id, &ret))
824 cleanup ("pthread_join failed", 1);
825
826 return ret;
827 }
828};
829
830// note that mutexes are not classes
831typedef pthread_mutex_t smutex;
832
833#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
834 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
835#else
836 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
130#endif 837#endif
131 838
839#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
840#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
841#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
842
843typedef pthread_cond_t scond;
844
845#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
846#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
847#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
848#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
849
850#endif
851

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines