ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.49 by root, Mon Jun 4 13:04:00 2007 UTC vs.
Revision 1.132 by root, Thu Dec 20 04:40:15 2018 UTC

1/* 1/*
2 * This file is part of Crossfire TRT, the Multiplayer Online Role Playing Game. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team 4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Crossfire TRT is free software; you can redistribute it and/or modify it 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * under the terms of the GNU General Public License as published by the Free 8 * the terms of the Affero GNU General Public License as published by the
8 * Software Foundation; either version 2 of the License, or (at your option) 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, but 12 * This program is distributed in the hope that it will be useful,
12 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the GNU General Public License along 17 * You should have received a copy of the Affero GNU General Public License
17 * with Crossfire TRT; if not, write to the Free Software Foundation, Inc. 51 18 * and the GNU General Public License along with this program. If not, see
18 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 19 * <http://www.gnu.org/licenses/>.
19 * 20 *
20 * The authors can be reached via e-mail to <crossfire@schmorp.de> 21 * The authors can be reached via e-mail to <support@deliantra.net>
21 */ 22 */
22 23
23#ifndef UTIL_H__ 24#ifndef UTIL_H__
24#define UTIL_H__ 25#define UTIL_H__
25 26
26//#define PREFER_MALLOC 27#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
28#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
29#define PREFER_MALLOC 0 // use malloc and not the slice allocator
27 30
28#if __GNUC__ >= 3 31#include <pthread.h>
29# define is_constant(c) __builtin_constant_p (c)
30# define expect(expr,value) __builtin_expect ((expr),(value))
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32#else
33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
36#endif
37
38#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
39# define decltype(x) typeof(x)
40#endif
41
42// put into ifs if you are very sure that the expression
43// is mostly true or mosty false. note that these return
44// booleans, not the expression.
45#define expect_false(expr) expect ((expr) != 0, 0)
46#define expect_true(expr) expect ((expr) != 0, 1)
47 32
48#include <cstddef> 33#include <cstddef>
49#include <cmath> 34#include <cmath>
50#include <new> 35#include <new>
51#include <vector> 36#include <vector>
52 37
53#include <glib.h> 38#include <glib.h>
54 39
40#include <flat_hash_map.hpp>
41
55#include <shstr.h> 42#include <shstr.h>
56#include <traits.h> 43#include <traits.h>
57 44
58// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 45#include "ecb.h"
59#define auto(var,expr) decltype(expr) var = (expr)
60 46
47#if DEBUG_SALLOC
48# define g_slice_alloc0(s) debug_slice_alloc0(s)
49# define g_slice_alloc(s) debug_slice_alloc(s)
50# define g_slice_free1(s,p) debug_slice_free1(s,p)
51void *g_slice_alloc (unsigned long size);
52void *g_slice_alloc0 (unsigned long size);
53void g_slice_free1 (unsigned long size, void *ptr);
54#elif PREFER_MALLOC
55# define g_slice_alloc0(s) calloc (1, (s))
56# define g_slice_alloc(s) malloc ((s))
57# define g_slice_free1(s,p) free ((p))
58#endif
59
61// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
62// that is in scope for the next statement only 61// that is in scope for the next statement only
63// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
64// (note: works great for pointers) 63// (note: works great for pointers)
65// most ugly macro I ever wrote 64// most ugly macro I ever wrote
66#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
71 70
72// in range excluding end 71// in range excluding end
73#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
74 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
75 74
75ecb_cold void cleanup (const char *cause, bool make_core = false);
76void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
77 77
78// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
79// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
84template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
85 89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
103
104// sign0 returns -1, 0 or +1
105template<typename T>
106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
111
112// div* only work correctly for div > 0
113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
114template<typename T> static inline T div (T val, T div)
115{
116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
122// div, round-up
123template<typename T> static inline T div_ru (T val, T div)
124{
125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126}
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div)
129{
130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131}
132
133// lerp* only work correctly for min_in < max_in
134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
86template<typename T> 135template<typename T>
87static inline T 136static inline T
88lerp (T val, T min_in, T max_in, T min_out, T max_out) 137lerp (T val, T min_in, T max_in, T min_out, T max_out)
89{ 138{
90 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140}
141
142// lerp, round-down
143template<typename T>
144static inline T
145lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-up
151template<typename T>
152static inline T
153lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
91} 156}
92 157
93// lots of stuff taken from FXT 158// lots of stuff taken from FXT
94 159
95/* Rotate right. This is used in various places for checksumming */ 160/* Rotate right. This is used in various places for checksumming */
133 int32_t d = b - a; 198 int32_t d = b - a;
134 d &= d >> 31; 199 d &= d >> 31;
135 return b - d; 200 return b - d;
136} 201}
137 202
138// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
139// on modern cpus 204// on modern cpus
140inline int 205inline int
141isqrt (int n) 206isqrt (int n)
142{ 207{
143 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
144} 223}
145 224
146// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
147#if 0 226#if 0
148// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
149#else 228#else
150// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
151#endif 230#endif
152inline int 231inline int
153idistance (int dx, int dy) 232idistance (int dx, int dy)
154{ 233{
155 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
156 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
157 236
158#if 0 237#if 0
159 return dx_ > dy_ 238 return dx_ > dy_
162#else 241#else
163 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
164#endif 243#endif
165} 244}
166 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
167/* 266/*
168 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
169 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
170 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
171 */ 270 */
173absdir (int d) 272absdir (int d)
174{ 273{
175 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
176} 275}
177 276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
281extern ssize_t slice_alloc; // statistics
282
283void *salloc_ (int n);
284void *salloc_ (int n, void *src);
285
286// strictly the same as g_slice_alloc, but never returns 0
287template<typename T>
288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
289
290// also copies src into the new area, like "memdup"
291// if src is 0, clears the memory
292template<typename T>
293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294
295// clears the memory
296template<typename T>
297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
298
299// for symmetry
300template<typename T>
301inline void sfree (T *ptr, int n = 1) noexcept
302{
303 if (ecb_expect_true (ptr))
304 {
305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 }
309}
310
311// nulls the pointer
312template<typename T>
313inline void sfree0 (T *&ptr, int n = 1) noexcept
314{
315 sfree<T> (ptr, n);
316 ptr = 0;
317}
318
178// makes dynamically allocated objects zero-initialised 319// makes dynamically allocated objects zero-initialised
179struct zero_initialised 320struct zero_initialised
180{ 321{
181 void *operator new (size_t s, void *p) 322 void *operator new (size_t s, void *p)
182 { 323 {
184 return p; 325 return p;
185 } 326 }
186 327
187 void *operator new (size_t s) 328 void *operator new (size_t s)
188 { 329 {
189 return g_slice_alloc0 (s); 330 return salloc0<char> (s);
190 } 331 }
191 332
192 void *operator new[] (size_t s) 333 void *operator new[] (size_t s)
193 { 334 {
194 return g_slice_alloc0 (s); 335 return salloc0<char> (s);
195 } 336 }
196 337
197 void operator delete (void *p, size_t s) 338 void operator delete (void *p, size_t s)
198 { 339 {
199 g_slice_free1 (s, p); 340 sfree ((char *)p, s);
200 } 341 }
201 342
202 void operator delete[] (void *p, size_t s) 343 void operator delete[] (void *p, size_t s)
203 { 344 {
204 g_slice_free1 (s, p); 345 sfree ((char *)p, s);
205 } 346 }
206}; 347};
207 348
208void *salloc_ (int n) throw (std::bad_alloc); 349// makes dynamically allocated objects zero-initialised
209void *salloc_ (int n, void *src) throw (std::bad_alloc); 350struct slice_allocated
210
211// strictly the same as g_slice_alloc, but never returns 0
212template<typename T>
213inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
214
215// also copies src into the new area, like "memdup"
216// if src is 0, clears the memory
217template<typename T>
218inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
219
220// clears the memory
221template<typename T>
222inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
223
224// for symmetry
225template<typename T>
226inline void sfree (T *ptr, int n = 1) throw ()
227{ 351{
228#ifdef PREFER_MALLOC 352 void *operator new (size_t s, void *p)
229 free (ptr); 353 {
230#else 354 return p;
231 g_slice_free1 (n * sizeof (T), (void *)ptr); 355 }
232#endif 356
233} 357 void *operator new (size_t s)
358 {
359 return salloc<char> (s);
360 }
361
362 void *operator new[] (size_t s)
363 {
364 return salloc<char> (s);
365 }
366
367 void operator delete (void *p, size_t s)
368 {
369 sfree ((char *)p, s);
370 }
371
372 void operator delete[] (void *p, size_t s)
373 {
374 sfree ((char *)p, s);
375 }
376};
234 377
235// a STL-compatible allocator that uses g_slice 378// a STL-compatible allocator that uses g_slice
236// boy, this is verbose 379// boy, this is much less verbose in newer C++ versions
237template<typename Tp> 380template<typename Tp>
238struct slice_allocator 381struct slice_allocator
239{ 382{
240 typedef size_t size_type; 383 using value_type = Tp;
241 typedef ptrdiff_t difference_type;
242 typedef Tp *pointer;
243 typedef const Tp *const_pointer;
244 typedef Tp &reference;
245 typedef const Tp &const_reference;
246 typedef Tp value_type;
247 384
248 template <class U> 385 slice_allocator () noexcept { }
249 struct rebind 386 template<class U> slice_allocator (const slice_allocator<U> &) noexcept {}
387
388 value_type *allocate (std::size_t n)
250 { 389 {
251 typedef slice_allocator<U> other; 390 return salloc<Tp> (n);
391 }
392
393 void deallocate (value_type *p, std::size_t n)
394 {
395 sfree<Tp> (p, n);
396 }
397};
398
399template<class T, class U>
400bool operator == (const slice_allocator<T> &, const slice_allocator<U> &) noexcept
401{
402 return true;
403}
404
405template<class T, class U>
406bool operator != (const slice_allocator<T> &x, const slice_allocator<U> &y) noexcept
407{
408 return !(x == y);
409}
410
411// basically a memory area, but refcounted
412struct refcnt_buf
413{
414 char *data;
415
416 refcnt_buf (size_t size = 0);
417 refcnt_buf (void *data, size_t size);
418
419 refcnt_buf (const refcnt_buf &src)
420 {
421 data = src.data;
422 inc ();
423 }
424
425 ~refcnt_buf ();
426
427 refcnt_buf &operator =(const refcnt_buf &src);
428
429 operator char *()
430 {
431 return data;
432 }
433
434 size_t size () const
435 {
436 return _size ();
437 }
438
439protected:
440 enum {
441 overhead = sizeof (uint32_t) * 2
252 }; 442 };
253 443
254 slice_allocator () throw () { } 444 uint32_t &_size () const
255 slice_allocator (const slice_allocator &o) throw () { }
256 template<typename Tp2>
257 slice_allocator (const slice_allocator<Tp2> &) throw () { }
258
259 ~slice_allocator () { }
260
261 pointer address (reference x) const { return &x; }
262 const_pointer address (const_reference x) const { return &x; }
263
264 pointer allocate (size_type n, const_pointer = 0)
265 { 445 {
266 return salloc<Tp> (n); 446 return ((unsigned int *)data)[-2];
267 } 447 }
268 448
269 void deallocate (pointer p, size_type n) 449 uint32_t &_refcnt () const
270 { 450 {
271 sfree<Tp> (p, n); 451 return ((unsigned int *)data)[-1];
272 } 452 }
273 453
274 size_type max_size ()const throw () 454 void _alloc (uint32_t size)
275 { 455 {
276 return size_t (-1) / sizeof (Tp); 456 data = ((char *)salloc<char> (size + overhead)) + overhead;
457 _size () = size;
458 _refcnt () = 1;
277 } 459 }
278 460
279 void construct (pointer p, const Tp &val) 461 void _dealloc ();
280 {
281 ::new (p) Tp (val);
282 }
283 462
284 void destroy (pointer p) 463 void inc ()
285 { 464 {
286 p->~Tp (); 465 ++_refcnt ();
287 } 466 }
288};
289 467
290// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 468 void dec ()
291// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
292// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
293struct tausworthe_random_generator
294{
295 // generator
296 uint32_t state [4];
297
298 void operator =(const tausworthe_random_generator &src)
299 { 469 {
300 state [0] = src.state [0]; 470 if (!--_refcnt ())
301 state [1] = src.state [1]; 471 _dealloc ();
302 state [2] = src.state [2];
303 state [3] = src.state [3];
304 } 472 }
305
306 void seed (uint32_t seed);
307 uint32_t next ();
308
309 // uniform distribution
310 uint32_t operator ()(uint32_t num)
311 {
312 return is_constant (num)
313 ? (next () * (uint64_t)num) >> 32U
314 : get_range (num);
315 }
316
317 // return a number within (min .. max)
318 int operator () (int r_min, int r_max)
319 {
320 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
321 ? r_min + operator ()(r_max - r_min + 1)
322 : get_range (r_min, r_max);
323 }
324
325 double operator ()()
326 {
327 return this->next () / (double)0xFFFFFFFFU;
328 }
329
330protected:
331 uint32_t get_range (uint32_t r_max);
332 int get_range (int r_min, int r_max);
333}; 473};
334 474
335typedef tausworthe_random_generator rand_gen; 475INTERFACE_CLASS (attachable)
476struct refcnt_base
477{
478 typedef int refcnt_t;
479 mutable refcnt_t ACC (RW, refcnt);
336 480
337extern rand_gen rndm; 481 MTH void refcnt_inc () const { ++refcnt; }
482 MTH void refcnt_dec () const { --refcnt; }
483
484 refcnt_base () : refcnt (0) { }
485};
486
487// to avoid branches with more advanced compilers
488extern refcnt_base::refcnt_t refcnt_dummy;
338 489
339template<class T> 490template<class T>
340struct refptr 491struct refptr
341{ 492{
493 // p if not null
494 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
495
496 void refcnt_dec ()
497 {
498 if (!ecb_is_constant (p))
499 --*refcnt_ref ();
500 else if (p)
501 --p->refcnt;
502 }
503
504 void refcnt_inc ()
505 {
506 if (!ecb_is_constant (p))
507 ++*refcnt_ref ();
508 else if (p)
509 ++p->refcnt;
510 }
511
342 T *p; 512 T *p;
343 513
344 refptr () : p(0) { } 514 refptr () : p(0) { }
345 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 515 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
346 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 516 refptr (T *p) : p(p) { refcnt_inc (); }
347 ~refptr () { if (p) p->refcnt_dec (); } 517 ~refptr () { refcnt_dec (); }
348 518
349 const refptr<T> &operator =(T *o) 519 const refptr<T> &operator =(T *o)
350 { 520 {
521 // if decrementing ever destroys we need to reverse the order here
351 if (p) p->refcnt_dec (); 522 refcnt_dec ();
352 p = o; 523 p = o;
353 if (p) p->refcnt_inc (); 524 refcnt_inc ();
354
355 return *this; 525 return *this;
356 } 526 }
357 527
358 const refptr<T> &operator =(const refptr<T> o) 528 const refptr<T> &operator =(const refptr<T> &o)
359 { 529 {
360 *this = o.p; 530 *this = o.p;
361 return *this; 531 return *this;
362 } 532 }
363 533
364 T &operator * () const { return *p; } 534 T &operator * () const { return *p; }
365 T *operator ->() const { return p; } 535 T *operator ->() const { return p; }
366 536
367 operator T *() const { return p; } 537 operator T *() const { return p; }
368}; 538};
369 539
370typedef refptr<maptile> maptile_ptr; 540typedef refptr<maptile> maptile_ptr;
371typedef refptr<object> object_ptr; 541typedef refptr<object> object_ptr;
372typedef refptr<archetype> arch_ptr; 542typedef refptr<archetype> arch_ptr;
373typedef refptr<client> client_ptr; 543typedef refptr<client> client_ptr;
374typedef refptr<player> player_ptr; 544typedef refptr<player> player_ptr;
545typedef refptr<region> region_ptr;
546
547#define STRHSH_NULL 2166136261
548
549static inline uint32_t
550strhsh (const char *s)
551{
552 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
553 // it is about twice as fast as the one-at-a-time one,
554 // with good distribution.
555 // FNV-1a is faster on many cpus because the multiplication
556 // runs concurrently with the looping logic.
557 // we modify the hash a bit to improve its distribution
558 uint32_t hash = STRHSH_NULL;
559
560 while (*s)
561 hash = (hash ^ *s++) * 16777619U;
562
563 return hash ^ (hash >> 16);
564}
565
566static inline uint32_t
567memhsh (const char *s, size_t len)
568{
569 uint32_t hash = STRHSH_NULL;
570
571 while (len--)
572 hash = (hash ^ *s++) * 16777619U;
573
574 return hash;
575}
375 576
376struct str_hash 577struct str_hash
377{ 578{
378 std::size_t operator ()(const char *s) const 579 std::size_t operator ()(const char *s) const
379 { 580 {
380 unsigned long hash = 0;
381
382 /* use the one-at-a-time hash function, which supposedly is
383 * better than the djb2-like one used by perl5.005, but
384 * certainly is better then the bug used here before.
385 * see http://burtleburtle.net/bob/hash/doobs.html
386 */
387 while (*s)
388 {
389 hash += *s++;
390 hash += hash << 10;
391 hash ^= hash >> 6;
392 }
393
394 hash += hash << 3;
395 hash ^= hash >> 11;
396 hash += hash << 15;
397
398 return hash; 581 return strhsh (s);
399 } 582 }
583
584 std::size_t operator ()(const shstr &s) const
585 {
586 return strhsh (s);
587 }
588
589 typedef ska::power_of_two_hash_policy hash_policy;
400}; 590};
401 591
402struct str_equal 592struct str_equal
403{ 593{
404 bool operator ()(const char *a, const char *b) const 594 bool operator ()(const char *a, const char *b) const
406 return !strcmp (a, b); 596 return !strcmp (a, b);
407 } 597 }
408}; 598};
409 599
410// Mostly the same as std::vector, but insert/erase can reorder 600// Mostly the same as std::vector, but insert/erase can reorder
411// the elements, making insret/remove O(1) instead of O(n). 601// the elements, making append(=insert)/remove O(1) instead of O(n).
412// 602//
413// NOTE: only some forms of erase/insert are available 603// NOTE: only some forms of erase are available
414template<class T> 604template<class T>
415struct unordered_vector : std::vector<T, slice_allocator<T> > 605struct unordered_vector : std::vector<T, slice_allocator<T> >
416{ 606{
417 typedef typename unordered_vector::iterator iterator; 607 typedef typename unordered_vector::iterator iterator;
418 608
430 } 620 }
431}; 621};
432 622
433// This container blends advantages of linked lists 623// This container blends advantages of linked lists
434// (efficiency) with vectors (random access) by 624// (efficiency) with vectors (random access) by
435// by using an unordered vector and storing the vector 625// using an unordered vector and storing the vector
436// index inside the object. 626// index inside the object.
437// 627//
438// + memory-efficient on most 64 bit archs 628// + memory-efficient on most 64 bit archs
439// + O(1) insert/remove 629// + O(1) insert/remove
440// + free unique (but varying) id for inserted objects 630// + free unique (but varying) id for inserted objects
441// + cache-friendly iteration 631// + cache-friendly iteration
442// - only works for pointers to structs 632// - only works for pointers to structs
443// 633//
444// NOTE: only some forms of erase/insert are available 634// NOTE: only some forms of erase/insert are available
445template<class T, int T::* index> 635typedef int object_vector_index;
636
637template<class T, object_vector_index T::*indexmember>
446struct object_vector : std::vector<T *, slice_allocator<T *> > 638struct object_vector : std::vector<T *, slice_allocator<T *> >
447{ 639{
448 typedef typename object_vector::iterator iterator; 640 typedef typename object_vector::iterator iterator;
449 641
450 bool contains (const T *obj) const 642 bool contains (const T *obj) const
451 { 643 {
452 return obj->*index; 644 return obj->*indexmember;
453 } 645 }
454 646
455 iterator find (const T *obj) 647 iterator find (const T *obj)
456 { 648 {
457 return obj->*index 649 return obj->*indexmember
458 ? this->begin () + obj->*index - 1 650 ? this->begin () + obj->*indexmember - 1
459 : this->end (); 651 : this->end ();
460 } 652 }
461 653
654 void push_back (T *obj)
655 {
656 std::vector<T *, slice_allocator<T *> >::push_back (obj);
657 obj->*indexmember = this->size ();
658 }
659
462 void insert (T *obj) 660 void insert (T *obj)
463 { 661 {
464 push_back (obj); 662 push_back (obj);
465 obj->*index = this->size ();
466 } 663 }
467 664
468 void insert (T &obj) 665 void insert (T &obj)
469 { 666 {
470 insert (&obj); 667 insert (&obj);
471 } 668 }
472 669
473 void erase (T *obj) 670 void erase (T *obj)
474 { 671 {
475 unsigned int pos = obj->*index; 672 object_vector_index pos = obj->*indexmember;
476 obj->*index = 0; 673 obj->*indexmember = 0;
477 674
478 if (pos < this->size ()) 675 if (pos < this->size ())
479 { 676 {
480 (*this)[pos - 1] = (*this)[this->size () - 1]; 677 (*this)[pos - 1] = (*this)[this->size () - 1];
481 (*this)[pos - 1]->*index = pos; 678 (*this)[pos - 1]->*indexmember = pos;
482 } 679 }
483 680
484 this->pop_back (); 681 this->pop_back ();
485 } 682 }
486 683
487 void erase (T &obj) 684 void erase (T &obj)
488 { 685 {
489 errase (&obj); 686 erase (&obj);
490 } 687 }
491}; 688};
689
690/////////////////////////////////////////////////////////////////////////////
691
692// something like a vector or stack, but without
693// out of bounds checking
694template<typename T>
695struct fixed_stack
696{
697 T *data;
698 int size;
699 int max;
700
701 fixed_stack ()
702 : size (0), data (0)
703 {
704 }
705
706 fixed_stack (int max)
707 : size (0), max (max)
708 {
709 data = salloc<T> (max);
710 }
711
712 void reset (int new_max)
713 {
714 sfree (data, max);
715 size = 0;
716 max = new_max;
717 data = salloc<T> (max);
718 }
719
720 void free ()
721 {
722 sfree (data, max);
723 data = 0;
724 }
725
726 ~fixed_stack ()
727 {
728 sfree (data, max);
729 }
730
731 T &operator[](int idx)
732 {
733 return data [idx];
734 }
735
736 void push (T v)
737 {
738 data [size++] = v;
739 }
740
741 T &pop ()
742 {
743 return data [--size];
744 }
745
746 T remove (int idx)
747 {
748 T v = data [idx];
749
750 data [idx] = data [--size];
751
752 return v;
753 }
754};
755
756/////////////////////////////////////////////////////////////////////////////
492 757
493// basically does what strncpy should do, but appends "..." to strings exceeding length 758// basically does what strncpy should do, but appends "..." to strings exceeding length
759// returns the number of bytes actually used (including \0)
494void assign (char *dst, const char *src, int maxlen); 760int assign (char *dst, const char *src, int maxsize);
495 761
496// type-safe version of assign 762// type-safe version of assign
497template<int N> 763template<int N>
498inline void assign (char (&dst)[N], const char *src) 764inline int assign (char (&dst)[N], const char *src)
499{ 765{
500 assign ((char *)&dst, src, N); 766 return assign ((char *)&dst, src, N);
501} 767}
502 768
503typedef double tstamp; 769typedef double tstamp;
504 770
505// return current time as timestampe 771// return current time as timestamp
506tstamp now (); 772tstamp now ();
507 773
508int similar_direction (int a, int b); 774int similar_direction (int a, int b);
509 775
510// like printf, but returns a std::string 776// like v?sprintf, but returns a "static" buffer
511const std::string format (const char *format, ...); 777char *vformat (const char *format, va_list ap);
778char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
512 779
780// safety-check player input which will become object->msg
781bool msg_is_safe (const char *msg);
782
783/////////////////////////////////////////////////////////////////////////////
784// threads, very very thin wrappers around pthreads
785
786struct thread
787{
788 pthread_t id;
789
790 void start (void *(*start_routine)(void *), void *arg = 0);
791
792 void cancel ()
793 {
794 pthread_cancel (id);
795 }
796
797 void *join ()
798 {
799 void *ret;
800
801 if (pthread_join (id, &ret))
802 cleanup ("pthread_join failed", 1);
803
804 return ret;
805 }
806};
807
808// note that mutexes are not classes
809typedef pthread_mutex_t smutex;
810
811#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
812 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
813#else
814 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
513#endif 815#endif
514 816
817#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
818#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
819#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
820
821typedef pthread_cond_t scond;
822
823#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
824#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
825#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
826#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
827
828#endif
829

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines