ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.14 by root, Thu Sep 14 18:13:02 2006 UTC vs.
Revision 1.84 by root, Wed Dec 31 17:35:37 2008 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
4#if __GNUC__ >= 3 29#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
6#else 33#else
7# define is_constant(c) 0 34# define is_constant(c) 0
35# define expect(expr,value) (expr)
36# define prefetch(addr,rw,locality)
8#endif 37#endif
9 38
39#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40# define decltype(x) typeof(x)
41#endif
42
43// put into ifs if you are very sure that the expression
44// is mostly true or mosty false. note that these return
45// booleans, not the expression.
46#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
47#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
48
49#include <pthread.h>
50
10#include <cstddef> 51#include <cstddef>
52#include <cmath>
53#include <new>
54#include <vector>
11 55
12#include <glib.h> 56#include <glib.h>
13 57
58#include <shstr.h>
59#include <traits.h>
60
61#if DEBUG_SALLOC
62# define g_slice_alloc0(s) debug_slice_alloc0(s)
63# define g_slice_alloc(s) debug_slice_alloc(s)
64# define g_slice_free1(s,p) debug_slice_free1(s,p)
65void *g_slice_alloc (unsigned long size);
66void *g_slice_alloc0 (unsigned long size);
67void g_slice_free1 (unsigned long size, void *ptr);
68#elif PREFER_MALLOC
69# define g_slice_alloc0(s) calloc (1, (s))
70# define g_slice_alloc(s) malloc ((s))
71# define g_slice_free1(s,p) free ((p))
72#endif
73
14// use a gcc extension for auto declarations until ISO C++ sanctifies them 74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
15#define AUTODECL(var,expr) typeof(expr) var = (expr) 75#define auto(var,expr) decltype(expr) var = (expr)
76
77// very ugly macro that basically declares and initialises a variable
78// that is in scope for the next statement only
79// works only for stuff that can be assigned 0 and converts to false
80// (note: works great for pointers)
81// most ugly macro I ever wrote
82#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83
84// in range including end
85#define IN_RANGE_INC(val,beg,end) \
86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87
88// in range excluding end
89#define IN_RANGE_EXC(val,beg,end) \
90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91
92void cleanup (const char *cause, bool make_core = false);
93void fork_abort (const char *msg);
94
95// rationale for using (U) not (T) is to reduce signed/unsigned issues,
96// as a is often a constant while b is the variable. it is still a bug, though.
97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100
101template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
102template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
103template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
104
105template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106
107template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109
110// sign returns -1 or +1
111template<typename T>
112static inline T sign (T v) { return v < 0 ? -1 : +1; }
113// relies on 2c representation
114template<>
115inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
116
117// sign0 returns -1, 0 or +1
118template<typename T>
119static inline T sign0 (T v) { return v ? sign (v) : 0; }
120
121// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
123// div, round-up
124template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
125// div, round-down
126template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
127
128template<typename T>
129static inline T
130lerp (T val, T min_in, T max_in, T min_out, T max_out)
131{
132 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
133}
134
135// lerp, round-down
136template<typename T>
137static inline T
138lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
139{
140 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
141}
142
143// lerp, round-up
144template<typename T>
145static inline T
146lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
147{
148 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
149}
150
151// lots of stuff taken from FXT
152
153/* Rotate right. This is used in various places for checksumming */
154//TODO: that sucks, use a better checksum algo
155static inline uint32_t
156rotate_right (uint32_t c, uint32_t count = 1)
157{
158 return (c << (32 - count)) | (c >> count);
159}
160
161static inline uint32_t
162rotate_left (uint32_t c, uint32_t count = 1)
163{
164 return (c >> (32 - count)) | (c << count);
165}
166
167// Return abs(a-b)
168// Both a and b must not have the most significant bit set
169static inline uint32_t
170upos_abs_diff (uint32_t a, uint32_t b)
171{
172 long d1 = b - a;
173 long d2 = (d1 & (d1 >> 31)) << 1;
174
175 return d1 - d2; // == (b - d) - (a + d);
176}
177
178// Both a and b must not have the most significant bit set
179static inline uint32_t
180upos_min (uint32_t a, uint32_t b)
181{
182 int32_t d = b - a;
183 d &= d >> 31;
184 return a + d;
185}
186
187// Both a and b must not have the most significant bit set
188static inline uint32_t
189upos_max (uint32_t a, uint32_t b)
190{
191 int32_t d = b - a;
192 d &= d >> 31;
193 return b - d;
194}
195
196// this is much faster than crossfires original algorithm
197// on modern cpus
198inline int
199isqrt (int n)
200{
201 return (int)sqrtf ((float)n);
202}
203
204// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
205#if 0
206// and has a max. error of 6 in the range -100..+100.
207#else
208// and has a max. error of 9 in the range -100..+100.
209#endif
210inline int
211idistance (int dx, int dy)
212{
213 unsigned int dx_ = abs (dx);
214 unsigned int dy_ = abs (dy);
215
216#if 0
217 return dx_ > dy_
218 ? (dx_ * 61685 + dy_ * 26870) >> 16
219 : (dy_ * 61685 + dx_ * 26870) >> 16;
220#else
221 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
222#endif
223}
224
225/*
226 * absdir(int): Returns a number between 1 and 8, which represent
227 * the "absolute" direction of a number (it actually takes care of
228 * "overflow" in previous calculations of a direction).
229 */
230inline int
231absdir (int d)
232{
233 return ((d - 1) & 7) + 1;
234}
235
236extern ssize_t slice_alloc; // statistics
237
238void *salloc_ (int n) throw (std::bad_alloc);
239void *salloc_ (int n, void *src) throw (std::bad_alloc);
240
241// strictly the same as g_slice_alloc, but never returns 0
242template<typename T>
243inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
244
245// also copies src into the new area, like "memdup"
246// if src is 0, clears the memory
247template<typename T>
248inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
249
250// clears the memory
251template<typename T>
252inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
253
254// for symmetry
255template<typename T>
256inline void sfree (T *ptr, int n = 1) throw ()
257{
258 if (expect_true (ptr))
259 {
260 slice_alloc -= n * sizeof (T);
261 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
262 g_slice_free1 (n * sizeof (T), (void *)ptr);
263 assert (slice_alloc >= 0);//D
264 }
265}
266
267// nulls the pointer
268template<typename T>
269inline void sfree0 (T *&ptr, int n = 1) throw ()
270{
271 sfree<T> (ptr, n);
272 ptr = 0;
273}
16 274
17// makes dynamically allocated objects zero-initialised 275// makes dynamically allocated objects zero-initialised
18struct zero_initialised 276struct zero_initialised
19{ 277{
20 void *operator new (size_t s, void *p) 278 void *operator new (size_t s, void *p)
23 return p; 281 return p;
24 } 282 }
25 283
26 void *operator new (size_t s) 284 void *operator new (size_t s)
27 { 285 {
28 return g_slice_alloc0 (s); 286 return salloc0<char> (s);
29 } 287 }
30 288
31 void *operator new[] (size_t s) 289 void *operator new[] (size_t s)
32 { 290 {
33 return g_slice_alloc0 (s); 291 return salloc0<char> (s);
34 } 292 }
35 293
36 void operator delete (void *p, size_t s) 294 void operator delete (void *p, size_t s)
37 { 295 {
38 g_slice_free1 (s, p); 296 sfree ((char *)p, s);
39 } 297 }
40 298
41 void operator delete[] (void *p, size_t s) 299 void operator delete[] (void *p, size_t s)
42 { 300 {
43 g_slice_free1 (s, p); 301 sfree ((char *)p, s);
44 } 302 }
45}; 303};
46 304
47// strictly the same as g_slice_alloc, but never returns 0 305// makes dynamically allocated objects zero-initialised
48void *alloc (int s) throw (std::bad_alloc); 306struct slice_allocated
49// for symmetry
50inline void dealloc (void *p, int s) throw ()
51{ 307{
52 g_slice_free1 (s, p); 308 void *operator new (size_t s, void *p)
53} 309 {
310 return p;
311 }
312
313 void *operator new (size_t s)
314 {
315 return salloc<char> (s);
316 }
317
318 void *operator new[] (size_t s)
319 {
320 return salloc<char> (s);
321 }
322
323 void operator delete (void *p, size_t s)
324 {
325 sfree ((char *)p, s);
326 }
327
328 void operator delete[] (void *p, size_t s)
329 {
330 sfree ((char *)p, s);
331 }
332};
54 333
55// a STL-compatible allocator that uses g_slice 334// a STL-compatible allocator that uses g_slice
56// boy, this is verbose 335// boy, this is verbose
57template<typename Tp> 336template<typename Tp>
58struct slice_allocator 337struct slice_allocator
70 { 349 {
71 typedef slice_allocator<U> other; 350 typedef slice_allocator<U> other;
72 }; 351 };
73 352
74 slice_allocator () throw () { } 353 slice_allocator () throw () { }
75 slice_allocator (const slice_allocator &o) throw () { } 354 slice_allocator (const slice_allocator &) throw () { }
76 template<typename Tp2> 355 template<typename Tp2>
77 slice_allocator (const slice_allocator<Tp2> &) throw () { } 356 slice_allocator (const slice_allocator<Tp2> &) throw () { }
78 357
79 ~slice_allocator () { } 358 ~slice_allocator () { }
80 359
81 pointer address (reference x) const { return &x; } 360 pointer address (reference x) const { return &x; }
82 const_pointer address (const_reference x) const { return &x; } 361 const_pointer address (const_reference x) const { return &x; }
83 362
84 pointer allocate (size_type n, const_pointer = 0) 363 pointer allocate (size_type n, const_pointer = 0)
85 { 364 {
86 return static_cast<pointer>(alloc (n * sizeof (Tp))); 365 return salloc<Tp> (n);
87 } 366 }
88 367
89 void deallocate (pointer p, size_type n) 368 void deallocate (pointer p, size_type n)
90 { 369 {
91 dealloc (static_cast<void *>(p), n * sizeof (Tp)); 370 sfree<Tp> (p, n);
92 } 371 }
93 372
94 size_type max_size ()const throw () 373 size_type max_size () const throw ()
95 { 374 {
96 return size_t (-1) / sizeof (Tp); 375 return size_t (-1) / sizeof (Tp);
97 } 376 }
98 377
99 void construct (pointer p, const Tp &val) 378 void construct (pointer p, const Tp &val)
105 { 384 {
106 p->~Tp (); 385 p->~Tp ();
107 } 386 }
108}; 387};
109 388
389// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
390// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
391// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
392struct tausworthe_random_generator
393{
394 uint32_t state [4];
395
396 void operator =(const tausworthe_random_generator &src)
397 {
398 state [0] = src.state [0];
399 state [1] = src.state [1];
400 state [2] = src.state [2];
401 state [3] = src.state [3];
402 }
403
404 void seed (uint32_t seed);
405 uint32_t next ();
406};
407
408// Xorshift RNGs, George Marsaglia
409// http://www.jstatsoft.org/v08/i14/paper
410// this one is about 40% faster than the tausworthe one above (i.e. not much),
411// despite the inlining, and has the issue of only creating 2**32-1 numbers.
412struct xorshift_random_generator
413{
414 uint32_t x, y;
415
416 void operator =(const xorshift_random_generator &src)
417 {
418 x = src.x;
419 y = src.y;
420 }
421
422 void seed (uint32_t seed)
423 {
424 x = seed;
425 y = seed * 69069U;
426 }
427
428 uint32_t next ()
429 {
430 uint32_t t = x ^ (x << 10);
431 x = y;
432 y = y ^ (y >> 13) ^ t ^ (t >> 10);
433 return y;
434 }
435};
436
437template<class generator>
438struct random_number_generator : generator
439{
440 // uniform distribution, 0 .. max (0, num - 1)
441 uint32_t operator ()(uint32_t num)
442 {
443 return !is_constant (num) ? get_range (num) // non-constant
444 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
445 : this->next () & (num - 1); // constant, power-of-two
446 }
447
448 // return a number within (min .. max)
449 int operator () (int r_min, int r_max)
450 {
451 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
452 ? r_min + operator ()(r_max - r_min + 1)
453 : get_range (r_min, r_max);
454 }
455
456 double operator ()()
457 {
458 return this->next () / (double)0xFFFFFFFFU;
459 }
460
461protected:
462 uint32_t get_range (uint32_t r_max);
463 int get_range (int r_min, int r_max);
464};
465
466typedef random_number_generator<tausworthe_random_generator> rand_gen;
467
468extern rand_gen rndm, rmg_rndm;
469
470INTERFACE_CLASS (attachable)
110struct refcounted 471struct refcnt_base
111{ 472{
112 mutable int refcnt; 473 typedef int refcnt_t;
113 refcounted () : refcnt (0) { } 474 mutable refcnt_t ACC (RW, refcnt);
475
114 void refcnt_inc () { ++refcnt; } 476 MTH void refcnt_inc () const { ++refcnt; }
115 void refcnt_dec () { --refcnt; 477 MTH void refcnt_dec () const { --refcnt; }
116 if (refcnt < 0)abort();}//D 478
479 refcnt_base () : refcnt (0) { }
117}; 480};
481
482// to avoid branches with more advanced compilers
483extern refcnt_base::refcnt_t refcnt_dummy;
118 484
119template<class T> 485template<class T>
120struct refptr 486struct refptr
121{ 487{
488 // p if not null
489 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
490
491 void refcnt_dec ()
492 {
493 if (!is_constant (p))
494 --*refcnt_ref ();
495 else if (p)
496 --p->refcnt;
497 }
498
499 void refcnt_inc ()
500 {
501 if (!is_constant (p))
502 ++*refcnt_ref ();
503 else if (p)
504 ++p->refcnt;
505 }
506
122 T *p; 507 T *p;
123 508
124 refptr () : p(0) { } 509 refptr () : p(0) { }
125 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 510 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
126 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 511 refptr (T *p) : p(p) { refcnt_inc (); }
127 ~refptr () { if (p) p->refcnt_dec (); } 512 ~refptr () { refcnt_dec (); }
128 513
129 const refptr<T> &operator =(T *o) 514 const refptr<T> &operator =(T *o)
130 { 515 {
516 // if decrementing ever destroys we need to reverse the order here
131 if (p) p->refcnt_dec (); 517 refcnt_dec ();
132 p = o; 518 p = o;
133 if (p) p->refcnt_inc (); 519 refcnt_inc ();
134
135 return *this; 520 return *this;
136 } 521 }
137 522
138 const refptr<T> &operator =(const refptr<T> o) 523 const refptr<T> &operator =(const refptr<T> &o)
139 { 524 {
140 *this = o.p; 525 *this = o.p;
141 return *this; 526 return *this;
142 } 527 }
143 528
144 T &operator * () const { return *p; } 529 T &operator * () const { return *p; }
145 T *operator ->() const { return p; } 530 T *operator ->() const { return p; }
146 531
147 operator T *() const { return p; } 532 operator T *() const { return p; }
148}; 533};
149 534
535typedef refptr<maptile> maptile_ptr;
536typedef refptr<object> object_ptr;
537typedef refptr<archetype> arch_ptr;
538typedef refptr<client> client_ptr;
539typedef refptr<player> player_ptr;
540
150struct str_hash 541struct str_hash
151{ 542{
152 std::size_t operator ()(const char *s) const 543 std::size_t operator ()(const char *s) const
153 { 544 {
154 unsigned long hash = 0; 545#if 0
546 uint32_t hash = 0;
155 547
156 /* use the one-at-a-time hash function, which supposedly is 548 /* use the one-at-a-time hash function, which supposedly is
157 * better than the djb2-like one used by perl5.005, but 549 * better than the djb2-like one used by perl5.005, but
158 * certainly is better then the bug used here before. 550 * certainly is better then the bug used here before.
159 * see http://burtleburtle.net/bob/hash/doobs.html 551 * see http://burtleburtle.net/bob/hash/doobs.html
166 } 558 }
167 559
168 hash += hash << 3; 560 hash += hash << 3;
169 hash ^= hash >> 11; 561 hash ^= hash >> 11;
170 hash += hash << 15; 562 hash += hash << 15;
563#else
564 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
565 // it is about twice as fast as the one-at-a-time one,
566 // with good distribution.
567 // FNV-1a is faster on many cpus because the multiplication
568 // runs concurrent with the looping logic.
569 uint32_t hash = 2166136261;
570
571 while (*s)
572 hash = (hash ^ *s++) * 16777619;
573#endif
171 574
172 return hash; 575 return hash;
173 } 576 }
174}; 577};
175 578
179 { 582 {
180 return !strcmp (a, b); 583 return !strcmp (a, b);
181 } 584 }
182}; 585};
183 586
184#include <vector> 587// Mostly the same as std::vector, but insert/erase can reorder
185 588// the elements, making append(=insert)/remove O(1) instead of O(n).
589//
590// NOTE: only some forms of erase are available
186template<class obj> 591template<class T>
187struct unordered_vector : std::vector<obj, slice_allocator<obj> > 592struct unordered_vector : std::vector<T, slice_allocator<T> >
188{ 593{
189 typedef typename unordered_vector::iterator iterator; 594 typedef typename unordered_vector::iterator iterator;
190 595
191 void erase (unsigned int pos) 596 void erase (unsigned int pos)
192 { 597 {
200 { 605 {
201 erase ((unsigned int )(i - this->begin ())); 606 erase ((unsigned int )(i - this->begin ()));
202 } 607 }
203}; 608};
204 609
205template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 610// This container blends advantages of linked lists
206template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 611// (efficiency) with vectors (random access) by
207template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 612// by using an unordered vector and storing the vector
613// index inside the object.
614//
615// + memory-efficient on most 64 bit archs
616// + O(1) insert/remove
617// + free unique (but varying) id for inserted objects
618// + cache-friendly iteration
619// - only works for pointers to structs
620//
621// NOTE: only some forms of erase/insert are available
622typedef int object_vector_index;
208 623
209template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 624template<class T, object_vector_index T::*indexmember>
625struct object_vector : std::vector<T *, slice_allocator<T *> >
626{
627 typedef typename object_vector::iterator iterator;
628
629 bool contains (const T *obj) const
630 {
631 return obj->*indexmember;
632 }
633
634 iterator find (const T *obj)
635 {
636 return obj->*indexmember
637 ? this->begin () + obj->*indexmember - 1
638 : this->end ();
639 }
640
641 void push_back (T *obj)
642 {
643 std::vector<T *, slice_allocator<T *> >::push_back (obj);
644 obj->*indexmember = this->size ();
645 }
646
647 void insert (T *obj)
648 {
649 push_back (obj);
650 }
651
652 void insert (T &obj)
653 {
654 insert (&obj);
655 }
656
657 void erase (T *obj)
658 {
659 unsigned int pos = obj->*indexmember;
660 obj->*indexmember = 0;
661
662 if (pos < this->size ())
663 {
664 (*this)[pos - 1] = (*this)[this->size () - 1];
665 (*this)[pos - 1]->*indexmember = pos;
666 }
667
668 this->pop_back ();
669 }
670
671 void erase (T &obj)
672 {
673 erase (&obj);
674 }
675};
210 676
211// basically does what strncpy should do, but appends "..." to strings exceeding length 677// basically does what strncpy should do, but appends "..." to strings exceeding length
212void assign (char *dst, const char *src, int maxlen); 678void assign (char *dst, const char *src, int maxlen);
213 679
214// type-safe version of assign 680// type-safe version of assign
216inline void assign (char (&dst)[N], const char *src) 682inline void assign (char (&dst)[N], const char *src)
217{ 683{
218 assign ((char *)&dst, src, N); 684 assign ((char *)&dst, src, N);
219} 685}
220 686
687typedef double tstamp;
688
689// return current time as timestamp
690tstamp now ();
691
692int similar_direction (int a, int b);
693
694// like sprintf, but returns a "static" buffer
695const char *format (const char *format, ...);
696
697/////////////////////////////////////////////////////////////////////////////
698// threads, very very thin wrappers around pthreads
699
700struct thread
701{
702 pthread_t id;
703
704 void start (void *(*start_routine)(void *), void *arg = 0);
705
706 void cancel ()
707 {
708 pthread_cancel (id);
709 }
710
711 void *join ()
712 {
713 void *ret;
714
715 if (pthread_join (id, &ret))
716 cleanup ("pthread_join failed", 1);
717
718 return ret;
719 }
720};
721
722// note that mutexes are not classes
723typedef pthread_mutex_t smutex;
724
725#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
726 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
727#else
728 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
221#endif 729#endif
222 730
731#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
732#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
733#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
734
735typedef pthread_cond_t scond;
736
737#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
738#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
739#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
740#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
741
742#endif
743

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines