ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.17 by root, Sat Dec 16 03:08:26 2006 UTC vs.
Revision 1.126 by root, Sat Nov 17 23:33:18 2018 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4#if __GNUC__ >= 3 26#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 27
28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32#include <pthread.h>
33
34#include <cstddef>
35#include <cmath>
36#include <new>
37#include <vector>
38
39#include <glib.h>
40
41#include <shstr.h>
42#include <traits.h>
43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr)
59
60#if cplusplus_does_not_suck /* still sucks in codesize with gcc 6, although local types work now */
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
6#else 67#else
7# define is_constant(c) 0 68#define array_length(name) (sizeof (name) / sizeof (name [0]))
8#endif 69#endif
9 70
10#include <cstddef> 71// very ugly macro that basically declares and initialises a variable
72// that is in scope for the next statement only
73// works only for stuff that can be assigned 0 and converts to false
74// (note: works great for pointers)
75// most ugly macro I ever wrote
76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
11 77
12#include <glib.h> 78// in range including end
79#define IN_RANGE_INC(val,beg,end) \
80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
13 81
14// use a gcc extension for auto declarations until ISO C++ sanctifies them 82// in range excluding end
15#define AUTODECL(var,expr) typeof(expr) var = (expr) 83#define IN_RANGE_EXC(val,beg,end) \
84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85
86ecb_cold void cleanup (const char *cause, bool make_core = false);
87ecb_cold void fork_abort (const char *msg);
88
89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
90// as a is often a constant while b is the variable. it is still a bug, though.
91template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
92template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119//clashes with C++0x
120template<typename T, typename U>
121static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129
130template<> inline float div (float val, float div) { return val / div; }
131template<> inline double div (double val, double div) { return val / div; }
132
133// div, round-up
134template<typename T> static inline T div_ru (T val, T div)
135{
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137}
138// div, round-down
139template<typename T> static inline T div_rd (T val, T div)
140{
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142}
143
144// lerp* only work correctly for min_in < max_in
145// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
146template<typename T>
147static inline T
148lerp (T val, T min_in, T max_in, T min_out, T max_out)
149{
150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151}
152
153// lerp, round-down
154template<typename T>
155static inline T
156lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157{
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159}
160
161// lerp, round-up
162template<typename T>
163static inline T
164lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165{
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
167}
168
169// lots of stuff taken from FXT
170
171/* Rotate right. This is used in various places for checksumming */
172//TODO: that sucks, use a better checksum algo
173static inline uint32_t
174rotate_right (uint32_t c, uint32_t count = 1)
175{
176 return (c << (32 - count)) | (c >> count);
177}
178
179static inline uint32_t
180rotate_left (uint32_t c, uint32_t count = 1)
181{
182 return (c >> (32 - count)) | (c << count);
183}
184
185// Return abs(a-b)
186// Both a and b must not have the most significant bit set
187static inline uint32_t
188upos_abs_diff (uint32_t a, uint32_t b)
189{
190 long d1 = b - a;
191 long d2 = (d1 & (d1 >> 31)) << 1;
192
193 return d1 - d2; // == (b - d) - (a + d);
194}
195
196// Both a and b must not have the most significant bit set
197static inline uint32_t
198upos_min (uint32_t a, uint32_t b)
199{
200 int32_t d = b - a;
201 d &= d >> 31;
202 return a + d;
203}
204
205// Both a and b must not have the most significant bit set
206static inline uint32_t
207upos_max (uint32_t a, uint32_t b)
208{
209 int32_t d = b - a;
210 d &= d >> 31;
211 return b - d;
212}
213
214// this is much faster than crossfire's original algorithm
215// on modern cpus
216inline int
217isqrt (int n)
218{
219 return (int)sqrtf ((float)n);
220}
221
222// this is kind of like the ^^ operator, if it would exist, without sequence point.
223// more handy than it looks like, due to the implicit !! done on its arguments
224inline bool
225logical_xor (bool a, bool b)
226{
227 return a != b;
228}
229
230inline bool
231logical_implies (bool a, bool b)
232{
233 return a <= b;
234}
235
236// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
237#if 0
238// and has a max. error of 6 in the range -100..+100.
239#else
240// and has a max. error of 9 in the range -100..+100.
241#endif
242inline int
243idistance (int dx, int dy)
244{
245 unsigned int dx_ = abs (dx);
246 unsigned int dy_ = abs (dy);
247
248#if 0
249 return dx_ > dy_
250 ? (dx_ * 61685 + dy_ * 26870) >> 16
251 : (dy_ * 61685 + dx_ * 26870) >> 16;
252#else
253 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
254#endif
255}
256
257// can be substantially faster than floor, if your value range allows for it
258template<typename T>
259inline T
260fastfloor (T x)
261{
262 return std::floor (x);
263}
264
265inline float
266fastfloor (float x)
267{
268 return sint32(x) - (x < 0);
269}
270
271inline double
272fastfloor (double x)
273{
274 return sint64(x) - (x < 0);
275}
276
277/*
278 * absdir(int): Returns a number between 1 and 8, which represent
279 * the "absolute" direction of a number (it actually takes care of
280 * "overflow" in previous calculations of a direction).
281 */
282inline int
283absdir (int d)
284{
285 return ((d - 1) & 7) + 1;
286}
287
288#define for_all_bits_sparse_32(mask, idxvar) \
289 for (uint32_t idxvar, mask_ = mask; \
290 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
291
292extern ssize_t slice_alloc; // statistics
293
294void *salloc_ (int n);
295void *salloc_ (int n, void *src);
296
297// strictly the same as g_slice_alloc, but never returns 0
298template<typename T>
299inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
300
301// also copies src into the new area, like "memdup"
302// if src is 0, clears the memory
303template<typename T>
304inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
305
306// clears the memory
307template<typename T>
308inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
309
310// for symmetry
311template<typename T>
312inline void sfree (T *ptr, int n = 1) noexcept
313{
314 if (expect_true (ptr))
315 {
316 slice_alloc -= n * sizeof (T);
317 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
318 g_slice_free1 (n * sizeof (T), (void *)ptr);
319 }
320}
321
322// nulls the pointer
323template<typename T>
324inline void sfree0 (T *&ptr, int n = 1) noexcept
325{
326 sfree<T> (ptr, n);
327 ptr = 0;
328}
16 329
17// makes dynamically allocated objects zero-initialised 330// makes dynamically allocated objects zero-initialised
18struct zero_initialised 331struct zero_initialised
19{ 332{
20 void *operator new (size_t s, void *p) 333 void *operator new (size_t s, void *p)
23 return p; 336 return p;
24 } 337 }
25 338
26 void *operator new (size_t s) 339 void *operator new (size_t s)
27 { 340 {
28 return g_slice_alloc0 (s); 341 return salloc0<char> (s);
29 } 342 }
30 343
31 void *operator new[] (size_t s) 344 void *operator new[] (size_t s)
32 { 345 {
33 return g_slice_alloc0 (s); 346 return salloc0<char> (s);
34 } 347 }
35 348
36 void operator delete (void *p, size_t s) 349 void operator delete (void *p, size_t s)
37 { 350 {
38 g_slice_free1 (s, p); 351 sfree ((char *)p, s);
39 } 352 }
40 353
41 void operator delete[] (void *p, size_t s) 354 void operator delete[] (void *p, size_t s)
42 { 355 {
43 g_slice_free1 (s, p); 356 sfree ((char *)p, s);
44 } 357 }
45}; 358};
46 359
47// strictly the same as g_slice_alloc, but never returns 0 360// makes dynamically allocated objects zero-initialised
48void *salloc (int size) throw (std::bad_alloc); 361struct slice_allocated
49// also copies src into the new area, like "memdup"
50void *salloc (int size, void *src) throw (std::bad_alloc);
51// for symmetry
52inline void sfree (void *ptr, int size) throw ()
53{ 362{
54 g_slice_free1 (size, ptr); 363 void *operator new (size_t s, void *p)
55} 364 {
365 return p;
366 }
367
368 void *operator new (size_t s)
369 {
370 return salloc<char> (s);
371 }
372
373 void *operator new[] (size_t s)
374 {
375 return salloc<char> (s);
376 }
377
378 void operator delete (void *p, size_t s)
379 {
380 sfree ((char *)p, s);
381 }
382
383 void operator delete[] (void *p, size_t s)
384 {
385 sfree ((char *)p, s);
386 }
387};
56 388
57// a STL-compatible allocator that uses g_slice 389// a STL-compatible allocator that uses g_slice
58// boy, this is verbose 390// boy, this is verbose
59template<typename Tp> 391template<typename Tp>
60struct slice_allocator 392struct slice_allocator
65 typedef const Tp *const_pointer; 397 typedef const Tp *const_pointer;
66 typedef Tp &reference; 398 typedef Tp &reference;
67 typedef const Tp &const_reference; 399 typedef const Tp &const_reference;
68 typedef Tp value_type; 400 typedef Tp value_type;
69 401
70 template <class U> 402 template <class U>
71 struct rebind 403 struct rebind
72 { 404 {
73 typedef slice_allocator<U> other; 405 typedef slice_allocator<U> other;
74 }; 406 };
75 407
76 slice_allocator () throw () { } 408 slice_allocator () noexcept { }
77 slice_allocator (const slice_allocator &o) throw () { } 409 slice_allocator (const slice_allocator &) noexcept { }
78 template<typename Tp2> 410 template<typename Tp2>
79 slice_allocator (const slice_allocator<Tp2> &) throw () { } 411 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
80 412
81 ~slice_allocator () { } 413 ~slice_allocator () { }
82 414
83 pointer address (reference x) const { return &x; } 415 pointer address (reference x) const { return &x; }
84 const_pointer address (const_reference x) const { return &x; } 416 const_pointer address (const_reference x) const { return &x; }
85 417
86 pointer allocate (size_type n, const_pointer = 0) 418 pointer allocate (size_type n, const_pointer = 0)
87 { 419 {
88 return static_cast<pointer>(salloc (n * sizeof (Tp))); 420 return salloc<Tp> (n);
89 } 421 }
90 422
91 void deallocate (pointer p, size_type n) 423 void deallocate (pointer p, size_type n)
92 { 424 {
93 sfree (static_cast<void *>(p), n * sizeof (Tp)); 425 sfree<Tp> (p, n);
94 } 426 }
95 427
96 size_type max_size ()const throw () 428 size_type max_size () const noexcept
97 { 429 {
98 return size_t (-1) / sizeof (Tp); 430 return size_t (-1) / sizeof (Tp);
99 } 431 }
100 432
101 void construct (pointer p, const Tp &val) 433 void construct (pointer p, const Tp &val)
107 { 439 {
108 p->~Tp (); 440 p->~Tp ();
109 } 441 }
110}; 442};
111 443
444// basically a memory area, but refcounted
445struct refcnt_buf
446{
447 char *data;
448
449 refcnt_buf (size_t size = 0);
450 refcnt_buf (void *data, size_t size);
451
452 refcnt_buf (const refcnt_buf &src)
453 {
454 data = src.data;
455 inc ();
456 }
457
458 ~refcnt_buf ();
459
460 refcnt_buf &operator =(const refcnt_buf &src);
461
462 operator char *()
463 {
464 return data;
465 }
466
467 size_t size () const
468 {
469 return _size ();
470 }
471
472protected:
473 enum {
474 overhead = sizeof (uint32_t) * 2
475 };
476
477 uint32_t &_size () const
478 {
479 return ((unsigned int *)data)[-2];
480 }
481
482 uint32_t &_refcnt () const
483 {
484 return ((unsigned int *)data)[-1];
485 }
486
487 void _alloc (uint32_t size)
488 {
489 data = ((char *)salloc<char> (size + overhead)) + overhead;
490 _size () = size;
491 _refcnt () = 1;
492 }
493
494 void _dealloc ();
495
496 void inc ()
497 {
498 ++_refcnt ();
499 }
500
501 void dec ()
502 {
503 if (!--_refcnt ())
504 _dealloc ();
505 }
506};
507
508INTERFACE_CLASS (attachable)
112struct refcounted 509struct refcnt_base
113{ 510{
114 refcounted () : refcnt (0) { } 511 typedef int refcnt_t;
115// virtual ~refcounted (); 512 mutable refcnt_t ACC (RW, refcnt);
513
116 void refcnt_inc () { ++refcnt; } 514 MTH void refcnt_inc () const { ++refcnt; }
117 void refcnt_dec () { --refcnt; } 515 MTH void refcnt_dec () const { --refcnt; }
118 bool dead () { return refcnt == 0; } 516
119 mutable int refcnt; 517 refcnt_base () : refcnt (0) { }
120#if 0
121private:
122 static refcounted *rc_first;
123 refcounted *rc_next;
124#endif
125}; 518};
519
520// to avoid branches with more advanced compilers
521extern refcnt_base::refcnt_t refcnt_dummy;
126 522
127template<class T> 523template<class T>
128struct refptr 524struct refptr
129{ 525{
526 // p if not null
527 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
528
529 void refcnt_dec ()
530 {
531 if (!ecb_is_constant (p))
532 --*refcnt_ref ();
533 else if (p)
534 --p->refcnt;
535 }
536
537 void refcnt_inc ()
538 {
539 if (!ecb_is_constant (p))
540 ++*refcnt_ref ();
541 else if (p)
542 ++p->refcnt;
543 }
544
130 T *p; 545 T *p;
131 546
132 refptr () : p(0) { } 547 refptr () : p(0) { }
133 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 548 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
134 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 549 refptr (T *p) : p(p) { refcnt_inc (); }
135 ~refptr () { if (p) p->refcnt_dec (); } 550 ~refptr () { refcnt_dec (); }
136 551
137 const refptr<T> &operator =(T *o) 552 const refptr<T> &operator =(T *o)
138 { 553 {
554 // if decrementing ever destroys we need to reverse the order here
139 if (p) p->refcnt_dec (); 555 refcnt_dec ();
140 p = o; 556 p = o;
141 if (p) p->refcnt_inc (); 557 refcnt_inc ();
142
143 return *this; 558 return *this;
144 } 559 }
145 560
146 const refptr<T> &operator =(const refptr<T> o) 561 const refptr<T> &operator =(const refptr<T> &o)
147 { 562 {
148 *this = o.p; 563 *this = o.p;
149 return *this; 564 return *this;
150 } 565 }
151 566
152 T &operator * () const { return *p; } 567 T &operator * () const { return *p; }
153 T *operator ->() const { return p; } 568 T *operator ->() const { return p; }
154 569
155 operator T *() const { return p; } 570 operator T *() const { return p; }
156}; 571};
157 572
573typedef refptr<maptile> maptile_ptr;
574typedef refptr<object> object_ptr;
575typedef refptr<archetype> arch_ptr;
576typedef refptr<client> client_ptr;
577typedef refptr<player> player_ptr;
578typedef refptr<region> region_ptr;
579
580#define STRHSH_NULL 2166136261
581
582static inline uint32_t
583strhsh (const char *s)
584{
585 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
586 // it is about twice as fast as the one-at-a-time one,
587 // with good distribution.
588 // FNV-1a is faster on many cpus because the multiplication
589 // runs concurrently with the looping logic.
590 // we modify the hash a bit to improve its distribution
591 uint32_t hash = STRHSH_NULL;
592
593 while (*s)
594 hash = (hash ^ *s++) * 16777619U;
595
596 return hash ^ (hash >> 16);
597}
598
599static inline uint32_t
600memhsh (const char *s, size_t len)
601{
602 uint32_t hash = STRHSH_NULL;
603
604 while (len--)
605 hash = (hash ^ *s++) * 16777619U;
606
607 return hash;
608}
609
158struct str_hash 610struct str_hash
159{ 611{
160 std::size_t operator ()(const char *s) const 612 std::size_t operator ()(const char *s) const
161 { 613 {
162 unsigned long hash = 0;
163
164 /* use the one-at-a-time hash function, which supposedly is
165 * better than the djb2-like one used by perl5.005, but
166 * certainly is better then the bug used here before.
167 * see http://burtleburtle.net/bob/hash/doobs.html
168 */
169 while (*s)
170 {
171 hash += *s++;
172 hash += hash << 10;
173 hash ^= hash >> 6;
174 }
175
176 hash += hash << 3;
177 hash ^= hash >> 11;
178 hash += hash << 15;
179
180 return hash; 614 return strhsh (s);
615 }
616
617 std::size_t operator ()(const shstr &s) const
618 {
619 return strhsh (s);
181 } 620 }
182}; 621};
183 622
184struct str_equal 623struct str_equal
185{ 624{
187 { 626 {
188 return !strcmp (a, b); 627 return !strcmp (a, b);
189 } 628 }
190}; 629};
191 630
192#include <vector> 631// Mostly the same as std::vector, but insert/erase can reorder
193 632// the elements, making append(=insert)/remove O(1) instead of O(n).
633//
634// NOTE: only some forms of erase are available
194template<class obj> 635template<class T>
195struct unordered_vector : std::vector<obj, slice_allocator<obj> > 636struct unordered_vector : std::vector<T, slice_allocator<T> >
196{ 637{
197 typedef typename unordered_vector::iterator iterator; 638 typedef typename unordered_vector::iterator iterator;
198 639
199 void erase (unsigned int pos) 640 void erase (unsigned int pos)
200 { 641 {
208 { 649 {
209 erase ((unsigned int )(i - this->begin ())); 650 erase ((unsigned int )(i - this->begin ()));
210 } 651 }
211}; 652};
212 653
213template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 654// This container blends advantages of linked lists
214template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 655// (efficiency) with vectors (random access) by
215template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 656// using an unordered vector and storing the vector
657// index inside the object.
658//
659// + memory-efficient on most 64 bit archs
660// + O(1) insert/remove
661// + free unique (but varying) id for inserted objects
662// + cache-friendly iteration
663// - only works for pointers to structs
664//
665// NOTE: only some forms of erase/insert are available
666typedef int object_vector_index;
216 667
217template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 668template<class T, object_vector_index T::*indexmember>
669struct object_vector : std::vector<T *, slice_allocator<T *> >
670{
671 typedef typename object_vector::iterator iterator;
672
673 bool contains (const T *obj) const
674 {
675 return obj->*indexmember;
676 }
677
678 iterator find (const T *obj)
679 {
680 return obj->*indexmember
681 ? this->begin () + obj->*indexmember - 1
682 : this->end ();
683 }
684
685 void push_back (T *obj)
686 {
687 std::vector<T *, slice_allocator<T *> >::push_back (obj);
688 obj->*indexmember = this->size ();
689 }
690
691 void insert (T *obj)
692 {
693 push_back (obj);
694 }
695
696 void insert (T &obj)
697 {
698 insert (&obj);
699 }
700
701 void erase (T *obj)
702 {
703 object_vector_index pos = obj->*indexmember;
704 obj->*indexmember = 0;
705
706 if (pos < this->size ())
707 {
708 (*this)[pos - 1] = (*this)[this->size () - 1];
709 (*this)[pos - 1]->*indexmember = pos;
710 }
711
712 this->pop_back ();
713 }
714
715 void erase (T &obj)
716 {
717 erase (&obj);
718 }
719};
720
721/////////////////////////////////////////////////////////////////////////////
722
723// something like a vector or stack, but without
724// out of bounds checking
725template<typename T>
726struct fixed_stack
727{
728 T *data;
729 int size;
730 int max;
731
732 fixed_stack ()
733 : size (0), data (0)
734 {
735 }
736
737 fixed_stack (int max)
738 : size (0), max (max)
739 {
740 data = salloc<T> (max);
741 }
742
743 void reset (int new_max)
744 {
745 sfree (data, max);
746 size = 0;
747 max = new_max;
748 data = salloc<T> (max);
749 }
750
751 void free ()
752 {
753 sfree (data, max);
754 data = 0;
755 }
756
757 ~fixed_stack ()
758 {
759 sfree (data, max);
760 }
761
762 T &operator[](int idx)
763 {
764 return data [idx];
765 }
766
767 void push (T v)
768 {
769 data [size++] = v;
770 }
771
772 T &pop ()
773 {
774 return data [--size];
775 }
776
777 T remove (int idx)
778 {
779 T v = data [idx];
780
781 data [idx] = data [--size];
782
783 return v;
784 }
785};
786
787/////////////////////////////////////////////////////////////////////////////
218 788
219// basically does what strncpy should do, but appends "..." to strings exceeding length 789// basically does what strncpy should do, but appends "..." to strings exceeding length
790// returns the number of bytes actually used (including \0)
220void assign (char *dst, const char *src, int maxlen); 791int assign (char *dst, const char *src, int maxsize);
221 792
222// type-safe version of assign 793// type-safe version of assign
223template<int N> 794template<int N>
224inline void assign (char (&dst)[N], const char *src) 795inline int assign (char (&dst)[N], const char *src)
225{ 796{
226 assign ((char *)&dst, src, N); 797 return assign ((char *)&dst, src, N);
227} 798}
228 799
229typedef double tstamp; 800typedef double tstamp;
230 801
231// return current time as timestampe 802// return current time as timestamp
232tstamp now (); 803tstamp now ();
233 804
805int similar_direction (int a, int b);
806
807// like v?sprintf, but returns a "static" buffer
808char *vformat (const char *format, va_list ap);
809char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
810
811// safety-check player input which will become object->msg
812bool msg_is_safe (const char *msg);
813
814/////////////////////////////////////////////////////////////////////////////
815// threads, very very thin wrappers around pthreads
816
817struct thread
818{
819 pthread_t id;
820
821 void start (void *(*start_routine)(void *), void *arg = 0);
822
823 void cancel ()
824 {
825 pthread_cancel (id);
826 }
827
828 void *join ()
829 {
830 void *ret;
831
832 if (pthread_join (id, &ret))
833 cleanup ("pthread_join failed", 1);
834
835 return ret;
836 }
837};
838
839// note that mutexes are not classes
840typedef pthread_mutex_t smutex;
841
842#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
843 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
844#else
845 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
234#endif 846#endif
235 847
848#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
849#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
850#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
851
852typedef pthread_cond_t scond;
853
854#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
855#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
856#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
857#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
858
859#endif
860

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines