ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.18 by root, Sat Dec 16 21:40:26 2006 UTC vs.
Revision 1.81 by root, Fri Dec 26 10:36:42 2008 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
4#if __GNUC__ >= 3 29#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
6#else 33#else
7# define is_constant(c) 0 34# define is_constant(c) 0
35# define expect(expr,value) (expr)
36# define prefetch(addr,rw,locality)
8#endif 37#endif
9 38
39#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40# define decltype(x) typeof(x)
41#endif
42
43// put into ifs if you are very sure that the expression
44// is mostly true or mosty false. note that these return
45// booleans, not the expression.
46#define expect_false(expr) expect ((expr) != 0, 0)
47#define expect_true(expr) expect ((expr) != 0, 1)
48
49#include <pthread.h>
50
10#include <cstddef> 51#include <cstddef>
52#include <cmath>
53#include <new>
54#include <vector>
11 55
12#include <glib.h> 56#include <glib.h>
13 57
58#include <shstr.h>
59#include <traits.h>
60
61#if DEBUG_SALLOC
62# define g_slice_alloc0(s) debug_slice_alloc0(s)
63# define g_slice_alloc(s) debug_slice_alloc(s)
64# define g_slice_free1(s,p) debug_slice_free1(s,p)
65void *g_slice_alloc (unsigned long size);
66void *g_slice_alloc0 (unsigned long size);
67void g_slice_free1 (unsigned long size, void *ptr);
68#elif PREFER_MALLOC
69# define g_slice_alloc0(s) calloc (1, (s))
70# define g_slice_alloc(s) malloc ((s))
71# define g_slice_free1(s,p) free ((p))
72#endif
73
14// use a gcc extension for auto declarations until ISO C++ sanctifies them 74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
15#define AUTODECL(var,expr) typeof(expr) var = (expr) 75#define auto(var,expr) decltype(expr) var = (expr)
76
77// very ugly macro that basically declares and initialises a variable
78// that is in scope for the next statement only
79// works only for stuff that can be assigned 0 and converts to false
80// (note: works great for pointers)
81// most ugly macro I ever wrote
82#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83
84// in range including end
85#define IN_RANGE_INC(val,beg,end) \
86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87
88// in range excluding end
89#define IN_RANGE_EXC(val,beg,end) \
90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91
92void cleanup (const char *cause, bool make_core = false);
93void fork_abort (const char *msg);
94
95// rationale for using (U) not (T) is to reduce signed/unsigned issues,
96// as a is often a constant while b is the variable. it is still a bug, though.
97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100
101template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
102template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
103template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
104
105template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106
107template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109
110// sign returns -1 or +1
111template<typename T>
112static inline T sign (T v) { return v < 0 ? -1 : +1; }
113// relies on 2c representation
114template<>
115inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
116
117// sign0 returns -1, 0 or +1
118template<typename T>
119static inline T sign0 (T v) { return v ? sign (v) : 0; }
120
121// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
123// div, round-up
124template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
125// div, round-down
126template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
127
128template<typename T>
129static inline T
130lerp (T val, T min_in, T max_in, T min_out, T max_out)
131{
132 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
133}
134
135// lerp, round-down
136template<typename T>
137static inline T
138lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
139{
140 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
141}
142
143// lerp, round-up
144template<typename T>
145static inline T
146lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
147{
148 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
149}
150
151// lots of stuff taken from FXT
152
153/* Rotate right. This is used in various places for checksumming */
154//TODO: that sucks, use a better checksum algo
155static inline uint32_t
156rotate_right (uint32_t c, uint32_t count = 1)
157{
158 return (c << (32 - count)) | (c >> count);
159}
160
161static inline uint32_t
162rotate_left (uint32_t c, uint32_t count = 1)
163{
164 return (c >> (32 - count)) | (c << count);
165}
166
167// Return abs(a-b)
168// Both a and b must not have the most significant bit set
169static inline uint32_t
170upos_abs_diff (uint32_t a, uint32_t b)
171{
172 long d1 = b - a;
173 long d2 = (d1 & (d1 >> 31)) << 1;
174
175 return d1 - d2; // == (b - d) - (a + d);
176}
177
178// Both a and b must not have the most significant bit set
179static inline uint32_t
180upos_min (uint32_t a, uint32_t b)
181{
182 int32_t d = b - a;
183 d &= d >> 31;
184 return a + d;
185}
186
187// Both a and b must not have the most significant bit set
188static inline uint32_t
189upos_max (uint32_t a, uint32_t b)
190{
191 int32_t d = b - a;
192 d &= d >> 31;
193 return b - d;
194}
195
196// this is much faster than crossfires original algorithm
197// on modern cpus
198inline int
199isqrt (int n)
200{
201 return (int)sqrtf ((float)n);
202}
203
204// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
205#if 0
206// and has a max. error of 6 in the range -100..+100.
207#else
208// and has a max. error of 9 in the range -100..+100.
209#endif
210inline int
211idistance (int dx, int dy)
212{
213 unsigned int dx_ = abs (dx);
214 unsigned int dy_ = abs (dy);
215
216#if 0
217 return dx_ > dy_
218 ? (dx_ * 61685 + dy_ * 26870) >> 16
219 : (dy_ * 61685 + dx_ * 26870) >> 16;
220#else
221 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
222#endif
223}
224
225/*
226 * absdir(int): Returns a number between 1 and 8, which represent
227 * the "absolute" direction of a number (it actually takes care of
228 * "overflow" in previous calculations of a direction).
229 */
230inline int
231absdir (int d)
232{
233 return ((d - 1) & 7) + 1;
234}
235
236extern ssize_t slice_alloc; // statistics
237
238void *salloc_ (int n) throw (std::bad_alloc);
239void *salloc_ (int n, void *src) throw (std::bad_alloc);
240
241// strictly the same as g_slice_alloc, but never returns 0
242template<typename T>
243inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
244
245// also copies src into the new area, like "memdup"
246// if src is 0, clears the memory
247template<typename T>
248inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
249
250// clears the memory
251template<typename T>
252inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
253
254// for symmetry
255template<typename T>
256inline void sfree (T *ptr, int n = 1) throw ()
257{
258 if (expect_true (ptr))
259 {
260 slice_alloc -= n * sizeof (T);
261 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
262 g_slice_free1 (n * sizeof (T), (void *)ptr);
263 assert (slice_alloc >= 0);//D
264 }
265}
266
267// nulls the pointer
268template<typename T>
269inline void sfree0 (T *&ptr, int n = 1) throw ()
270{
271 sfree<T> (ptr, n);
272 ptr = 0;
273}
16 274
17// makes dynamically allocated objects zero-initialised 275// makes dynamically allocated objects zero-initialised
18struct zero_initialised 276struct zero_initialised
19{ 277{
20 void *operator new (size_t s, void *p) 278 void *operator new (size_t s, void *p)
23 return p; 281 return p;
24 } 282 }
25 283
26 void *operator new (size_t s) 284 void *operator new (size_t s)
27 { 285 {
28 return g_slice_alloc0 (s); 286 return salloc0<char> (s);
29 } 287 }
30 288
31 void *operator new[] (size_t s) 289 void *operator new[] (size_t s)
32 { 290 {
33 return g_slice_alloc0 (s); 291 return salloc0<char> (s);
34 } 292 }
35 293
36 void operator delete (void *p, size_t s) 294 void operator delete (void *p, size_t s)
37 { 295 {
38 g_slice_free1 (s, p); 296 sfree ((char *)p, s);
39 } 297 }
40 298
41 void operator delete[] (void *p, size_t s) 299 void operator delete[] (void *p, size_t s)
42 { 300 {
43 g_slice_free1 (s, p); 301 sfree ((char *)p, s);
44 } 302 }
45}; 303};
46 304
47// strictly the same as g_slice_alloc, but never returns 0 305// makes dynamically allocated objects zero-initialised
48void *salloc (int size) throw (std::bad_alloc); 306struct slice_allocated
49// also copies src into the new area, like "memdup"
50// if src is 0, clears the memory
51void *salloc (int size, void *src) throw (std::bad_alloc);
52
53// and as a template
54template<typename T>
55inline T *salloc (int size) throw (std::bad_alloc) { return (T *)salloc (size * sizeof (T)); }
56template<typename T>
57inline T *salloc (int size, T *src) throw (std::bad_alloc) { return (T *)salloc (size * sizeof (T), (void *)src); }
58
59// for symmetry
60template<typename T>
61inline void sfree (T *ptr, int size) throw ()
62{ 307{
63 g_slice_free1 (size * sizeof (T), (void *)ptr); 308 void *operator new (size_t s, void *p)
64} 309 {
310 return p;
311 }
312
313 void *operator new (size_t s)
314 {
315 return salloc<char> (s);
316 }
317
318 void *operator new[] (size_t s)
319 {
320 return salloc<char> (s);
321 }
322
323 void operator delete (void *p, size_t s)
324 {
325 sfree ((char *)p, s);
326 }
327
328 void operator delete[] (void *p, size_t s)
329 {
330 sfree ((char *)p, s);
331 }
332};
65 333
66// a STL-compatible allocator that uses g_slice 334// a STL-compatible allocator that uses g_slice
67// boy, this is verbose 335// boy, this is verbose
68template<typename Tp> 336template<typename Tp>
69struct slice_allocator 337struct slice_allocator
81 { 349 {
82 typedef slice_allocator<U> other; 350 typedef slice_allocator<U> other;
83 }; 351 };
84 352
85 slice_allocator () throw () { } 353 slice_allocator () throw () { }
86 slice_allocator (const slice_allocator &o) throw () { } 354 slice_allocator (const slice_allocator &) throw () { }
87 template<typename Tp2> 355 template<typename Tp2>
88 slice_allocator (const slice_allocator<Tp2> &) throw () { } 356 slice_allocator (const slice_allocator<Tp2> &) throw () { }
89 357
90 ~slice_allocator () { } 358 ~slice_allocator () { }
91 359
97 return salloc<Tp> (n); 365 return salloc<Tp> (n);
98 } 366 }
99 367
100 void deallocate (pointer p, size_type n) 368 void deallocate (pointer p, size_type n)
101 { 369 {
102 sfree (p, n); 370 sfree<Tp> (p, n);
103 } 371 }
104 372
105 size_type max_size ()const throw () 373 size_type max_size () const throw ()
106 { 374 {
107 return size_t (-1) / sizeof (Tp); 375 return size_t (-1) / sizeof (Tp);
108 } 376 }
109 377
110 void construct (pointer p, const Tp &val) 378 void construct (pointer p, const Tp &val)
116 { 384 {
117 p->~Tp (); 385 p->~Tp ();
118 } 386 }
119}; 387};
120 388
389// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
390// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
391// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
392struct tausworthe_random_generator
393{
394 // generator
395 uint32_t state [4];
396
397 void operator =(const tausworthe_random_generator &src)
398 {
399 state [0] = src.state [0];
400 state [1] = src.state [1];
401 state [2] = src.state [2];
402 state [3] = src.state [3];
403 }
404
405 void seed (uint32_t seed);
406 uint32_t next ();
407
408 // uniform distribution, 0 .. max (0, num - 1)
409 uint32_t operator ()(uint32_t num)
410 {
411 return is_constant (num)
412 ? (next () * (uint64_t)num) >> 32U
413 : get_range (num);
414 }
415
416 // return a number within (min .. max)
417 int operator () (int r_min, int r_max)
418 {
419 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
420 ? r_min + operator ()(r_max - r_min + 1)
421 : get_range (r_min, r_max);
422 }
423
424 double operator ()()
425 {
426 return this->next () / (double)0xFFFFFFFFU;
427 }
428
429protected:
430 uint32_t get_range (uint32_t r_max);
431 int get_range (int r_min, int r_max);
432};
433
434typedef tausworthe_random_generator rand_gen;
435
436extern rand_gen rndm, rmg_rndm;
437
438INTERFACE_CLASS (attachable)
121struct refcounted 439struct refcnt_base
122{ 440{
123 refcounted () : refcnt (0) { } 441 typedef int refcnt_t;
124// virtual ~refcounted (); 442 mutable refcnt_t ACC (RW, refcnt);
443
125 void refcnt_inc () { ++refcnt; } 444 MTH void refcnt_inc () const { ++refcnt; }
126 void refcnt_dec () { --refcnt; } 445 MTH void refcnt_dec () const { --refcnt; }
127 bool dead () { return refcnt == 0; } 446
128 mutable int refcnt; 447 refcnt_base () : refcnt (0) { }
129#if 0
130private:
131 static refcounted *rc_first;
132 refcounted *rc_next;
133#endif
134}; 448};
449
450// to avoid branches with more advanced compilers
451extern refcnt_base::refcnt_t refcnt_dummy;
135 452
136template<class T> 453template<class T>
137struct refptr 454struct refptr
138{ 455{
456 // p if not null
457 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
458
459 void refcnt_dec ()
460 {
461 if (!is_constant (p))
462 --*refcnt_ref ();
463 else if (p)
464 --p->refcnt;
465 }
466
467 void refcnt_inc ()
468 {
469 if (!is_constant (p))
470 ++*refcnt_ref ();
471 else if (p)
472 ++p->refcnt;
473 }
474
139 T *p; 475 T *p;
140 476
141 refptr () : p(0) { } 477 refptr () : p(0) { }
142 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 478 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
143 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 479 refptr (T *p) : p(p) { refcnt_inc (); }
144 ~refptr () { if (p) p->refcnt_dec (); } 480 ~refptr () { refcnt_dec (); }
145 481
146 const refptr<T> &operator =(T *o) 482 const refptr<T> &operator =(T *o)
147 { 483 {
484 // if decrementing ever destroys we need to reverse the order here
148 if (p) p->refcnt_dec (); 485 refcnt_dec ();
149 p = o; 486 p = o;
150 if (p) p->refcnt_inc (); 487 refcnt_inc ();
151
152 return *this; 488 return *this;
153 } 489 }
154 490
155 const refptr<T> &operator =(const refptr<T> o) 491 const refptr<T> &operator =(const refptr<T> &o)
156 { 492 {
157 *this = o.p; 493 *this = o.p;
158 return *this; 494 return *this;
159 } 495 }
160 496
161 T &operator * () const { return *p; } 497 T &operator * () const { return *p; }
162 T *operator ->() const { return p; } 498 T *operator ->() const { return p; }
163 499
164 operator T *() const { return p; } 500 operator T *() const { return p; }
165}; 501};
502
503typedef refptr<maptile> maptile_ptr;
504typedef refptr<object> object_ptr;
505typedef refptr<archetype> arch_ptr;
506typedef refptr<client> client_ptr;
507typedef refptr<player> player_ptr;
166 508
167struct str_hash 509struct str_hash
168{ 510{
169 std::size_t operator ()(const char *s) const 511 std::size_t operator ()(const char *s) const
170 { 512 {
196 { 538 {
197 return !strcmp (a, b); 539 return !strcmp (a, b);
198 } 540 }
199}; 541};
200 542
201#include <vector> 543// Mostly the same as std::vector, but insert/erase can reorder
202 544// the elements, making append(=insert)/remove O(1) instead of O(n).
545//
546// NOTE: only some forms of erase are available
203template<class obj> 547template<class T>
204struct unordered_vector : std::vector<obj, slice_allocator<obj> > 548struct unordered_vector : std::vector<T, slice_allocator<T> >
205{ 549{
206 typedef typename unordered_vector::iterator iterator; 550 typedef typename unordered_vector::iterator iterator;
207 551
208 void erase (unsigned int pos) 552 void erase (unsigned int pos)
209 { 553 {
217 { 561 {
218 erase ((unsigned int )(i - this->begin ())); 562 erase ((unsigned int )(i - this->begin ()));
219 } 563 }
220}; 564};
221 565
222template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 566// This container blends advantages of linked lists
223template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 567// (efficiency) with vectors (random access) by
224template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 568// by using an unordered vector and storing the vector
569// index inside the object.
570//
571// + memory-efficient on most 64 bit archs
572// + O(1) insert/remove
573// + free unique (but varying) id for inserted objects
574// + cache-friendly iteration
575// - only works for pointers to structs
576//
577// NOTE: only some forms of erase/insert are available
578typedef int object_vector_index;
225 579
226template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 580template<class T, object_vector_index T::*indexmember>
581struct object_vector : std::vector<T *, slice_allocator<T *> >
582{
583 typedef typename object_vector::iterator iterator;
584
585 bool contains (const T *obj) const
586 {
587 return obj->*indexmember;
588 }
589
590 iterator find (const T *obj)
591 {
592 return obj->*indexmember
593 ? this->begin () + obj->*indexmember - 1
594 : this->end ();
595 }
596
597 void push_back (T *obj)
598 {
599 std::vector<T *, slice_allocator<T *> >::push_back (obj);
600 obj->*indexmember = this->size ();
601 }
602
603 void insert (T *obj)
604 {
605 push_back (obj);
606 }
607
608 void insert (T &obj)
609 {
610 insert (&obj);
611 }
612
613 void erase (T *obj)
614 {
615 unsigned int pos = obj->*indexmember;
616 obj->*indexmember = 0;
617
618 if (pos < this->size ())
619 {
620 (*this)[pos - 1] = (*this)[this->size () - 1];
621 (*this)[pos - 1]->*indexmember = pos;
622 }
623
624 this->pop_back ();
625 }
626
627 void erase (T &obj)
628 {
629 erase (&obj);
630 }
631};
227 632
228// basically does what strncpy should do, but appends "..." to strings exceeding length 633// basically does what strncpy should do, but appends "..." to strings exceeding length
229void assign (char *dst, const char *src, int maxlen); 634void assign (char *dst, const char *src, int maxlen);
230 635
231// type-safe version of assign 636// type-safe version of assign
235 assign ((char *)&dst, src, N); 640 assign ((char *)&dst, src, N);
236} 641}
237 642
238typedef double tstamp; 643typedef double tstamp;
239 644
240// return current time as timestampe 645// return current time as timestamp
241tstamp now (); 646tstamp now ();
242 647
648int similar_direction (int a, int b);
649
650// like sprintf, but returns a "static" buffer
651const char *format (const char *format, ...);
652
653/////////////////////////////////////////////////////////////////////////////
654// threads, very very thin wrappers around pthreads
655
656struct thread
657{
658 pthread_t id;
659
660 void start (void *(*start_routine)(void *), void *arg = 0);
661
662 void cancel ()
663 {
664 pthread_cancel (id);
665 }
666
667 void *join ()
668 {
669 void *ret;
670
671 if (pthread_join (id, &ret))
672 cleanup ("pthread_join failed", 1);
673
674 return ret;
675 }
676};
677
678// note that mutexes are not classes
679typedef pthread_mutex_t smutex;
680
681#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
682 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
683#else
684 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
243#endif 685#endif
244 686
687#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
688#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
689#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
690
691typedef pthread_cond_t scond;
692
693#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
694#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
695#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
696#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
697
698#endif
699

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines