ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.20 by root, Sun Dec 17 23:10:35 2006 UTC vs.
Revision 1.78 by root, Thu Dec 4 03:48:19 2008 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
4#if __GNUC__ >= 3 29#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
6#else 33#else
7# define is_constant(c) 0 34# define is_constant(c) 0
35# define expect(expr,value) (expr)
36# define prefetch(addr,rw,locality)
8#endif 37#endif
9 38
39#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40# define decltype(x) typeof(x)
41#endif
42
43// put into ifs if you are very sure that the expression
44// is mostly true or mosty false. note that these return
45// booleans, not the expression.
46#define expect_false(expr) expect ((expr) != 0, 0)
47#define expect_true(expr) expect ((expr) != 0, 1)
48
49#include <pthread.h>
50
10#include <cstddef> 51#include <cstddef>
52#include <cmath>
53#include <new>
54#include <vector>
11 55
12#include <glib.h> 56#include <glib.h>
13 57
58#include <shstr.h>
59#include <traits.h>
60
61#if DEBUG_SALLOC
62# define g_slice_alloc0(s) debug_slice_alloc0(s)
63# define g_slice_alloc(s) debug_slice_alloc(s)
64# define g_slice_free1(s,p) debug_slice_free1(s,p)
65void *g_slice_alloc (unsigned long size);
66void *g_slice_alloc0 (unsigned long size);
67void g_slice_free1 (unsigned long size, void *ptr);
68#elif PREFER_MALLOC
69# define g_slice_alloc0(s) calloc (1, (s))
70# define g_slice_alloc(s) malloc ((s))
71# define g_slice_free1(s,p) free ((p))
72#endif
73
14// use a gcc extension for auto declarations until ISO C++ sanctifies them 74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
15#define AUTODECL(var,expr) typeof(expr) var = (expr) 75#define auto(var,expr) decltype(expr) var = (expr)
76
77// very ugly macro that basicaly declares and initialises a variable
78// that is in scope for the next statement only
79// works only for stuff that can be assigned 0 and converts to false
80// (note: works great for pointers)
81// most ugly macro I ever wrote
82#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83
84// in range including end
85#define IN_RANGE_INC(val,beg,end) \
86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87
88// in range excluding end
89#define IN_RANGE_EXC(val,beg,end) \
90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91
92void cleanup (const char *cause, bool make_core = false);
93void fork_abort (const char *msg);
94
95// rationale for using (U) not (T) is to reduce signed/unsigned issues,
96// as a is often a constant while b is the variable. it is still a bug, though.
97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100
101template<typename T> static inline void min_it (T &v, T m) { v = min (v, m); }
102template<typename T> static inline void max_it (T &v, T m) { v = max (v, m); }
103template<typename T> static inline void clamp_it (T &v, T a, T b) { v = clamp (v, a, b); }
104
105template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106
107template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109
110// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
111template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
112// div, round-up
113template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
114// div, round-down
115template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
116
117template<typename T>
118static inline T
119lerp (T val, T min_in, T max_in, T min_out, T max_out)
120{
121 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
122}
123
124// lerp, round-down
125template<typename T>
126static inline T
127lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
128{
129 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
130}
131
132// lerp, round-up
133template<typename T>
134static inline T
135lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
136{
137 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
138}
139
140// lots of stuff taken from FXT
141
142/* Rotate right. This is used in various places for checksumming */
143//TODO: that sucks, use a better checksum algo
144static inline uint32_t
145rotate_right (uint32_t c, uint32_t count = 1)
146{
147 return (c << (32 - count)) | (c >> count);
148}
149
150static inline uint32_t
151rotate_left (uint32_t c, uint32_t count = 1)
152{
153 return (c >> (32 - count)) | (c << count);
154}
155
156// Return abs(a-b)
157// Both a and b must not have the most significant bit set
158static inline uint32_t
159upos_abs_diff (uint32_t a, uint32_t b)
160{
161 long d1 = b - a;
162 long d2 = (d1 & (d1 >> 31)) << 1;
163
164 return d1 - d2; // == (b - d) - (a + d);
165}
166
167// Both a and b must not have the most significant bit set
168static inline uint32_t
169upos_min (uint32_t a, uint32_t b)
170{
171 int32_t d = b - a;
172 d &= d >> 31;
173 return a + d;
174}
175
176// Both a and b must not have the most significant bit set
177static inline uint32_t
178upos_max (uint32_t a, uint32_t b)
179{
180 int32_t d = b - a;
181 d &= d >> 31;
182 return b - d;
183}
184
185// this is much faster than crossfires original algorithm
186// on modern cpus
187inline int
188isqrt (int n)
189{
190 return (int)sqrtf ((float)n);
191}
192
193// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
194#if 0
195// and has a max. error of 6 in the range -100..+100.
196#else
197// and has a max. error of 9 in the range -100..+100.
198#endif
199inline int
200idistance (int dx, int dy)
201{
202 unsigned int dx_ = abs (dx);
203 unsigned int dy_ = abs (dy);
204
205#if 0
206 return dx_ > dy_
207 ? (dx_ * 61685 + dy_ * 26870) >> 16
208 : (dy_ * 61685 + dx_ * 26870) >> 16;
209#else
210 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
211#endif
212}
213
214/*
215 * absdir(int): Returns a number between 1 and 8, which represent
216 * the "absolute" direction of a number (it actually takes care of
217 * "overflow" in previous calculations of a direction).
218 */
219inline int
220absdir (int d)
221{
222 return ((d - 1) & 7) + 1;
223}
224
225extern ssize_t slice_alloc; // statistics
226
227void *salloc_ (int n) throw (std::bad_alloc);
228void *salloc_ (int n, void *src) throw (std::bad_alloc);
229
230// strictly the same as g_slice_alloc, but never returns 0
231template<typename T>
232inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
233
234// also copies src into the new area, like "memdup"
235// if src is 0, clears the memory
236template<typename T>
237inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
238
239// clears the memory
240template<typename T>
241inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
242
243// for symmetry
244template<typename T>
245inline void sfree (T *ptr, int n = 1) throw ()
246{
247 if (expect_true (ptr))
248 {
249 slice_alloc -= n * sizeof (T);
250 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
251 g_slice_free1 (n * sizeof (T), (void *)ptr);
252 assert (slice_alloc >= 0);//D
253 }
254}
255
256// nulls the pointer
257template<typename T>
258inline void sfree0 (T *&ptr, int n = 1) throw ()
259{
260 sfree<T> (ptr, n);
261 ptr = 0;
262}
16 263
17// makes dynamically allocated objects zero-initialised 264// makes dynamically allocated objects zero-initialised
18struct zero_initialised 265struct zero_initialised
19{ 266{
20 void *operator new (size_t s, void *p) 267 void *operator new (size_t s, void *p)
23 return p; 270 return p;
24 } 271 }
25 272
26 void *operator new (size_t s) 273 void *operator new (size_t s)
27 { 274 {
28 return g_slice_alloc0 (s); 275 return salloc0<char> (s);
29 } 276 }
30 277
31 void *operator new[] (size_t s) 278 void *operator new[] (size_t s)
32 { 279 {
33 return g_slice_alloc0 (s); 280 return salloc0<char> (s);
34 } 281 }
35 282
36 void operator delete (void *p, size_t s) 283 void operator delete (void *p, size_t s)
37 { 284 {
38 g_slice_free1 (s, p); 285 sfree ((char *)p, s);
39 } 286 }
40 287
41 void operator delete[] (void *p, size_t s) 288 void operator delete[] (void *p, size_t s)
42 { 289 {
43 g_slice_free1 (s, p); 290 sfree ((char *)p, s);
44 } 291 }
45}; 292};
46 293
47void *salloc_ (int n) throw (std::bad_alloc); 294// makes dynamically allocated objects zero-initialised
48void *salloc_ (int n, void *src) throw (std::bad_alloc); 295struct slice_allocated
49
50// strictly the same as g_slice_alloc, but never returns 0
51template<typename T>
52inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
53
54// also copies src into the new area, like "memdup"
55// if src is 0, clears the memory
56template<typename T>
57inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
58
59// for symmetry
60template<typename T>
61inline void sfree (T *ptr, int n = 1) throw ()
62{ 296{
63 g_slice_free1 (n * sizeof (T), (void *)ptr); 297 void *operator new (size_t s, void *p)
64} 298 {
299 return p;
300 }
301
302 void *operator new (size_t s)
303 {
304 return salloc<char> (s);
305 }
306
307 void *operator new[] (size_t s)
308 {
309 return salloc<char> (s);
310 }
311
312 void operator delete (void *p, size_t s)
313 {
314 sfree ((char *)p, s);
315 }
316
317 void operator delete[] (void *p, size_t s)
318 {
319 sfree ((char *)p, s);
320 }
321};
65 322
66// a STL-compatible allocator that uses g_slice 323// a STL-compatible allocator that uses g_slice
67// boy, this is verbose 324// boy, this is verbose
68template<typename Tp> 325template<typename Tp>
69struct slice_allocator 326struct slice_allocator
81 { 338 {
82 typedef slice_allocator<U> other; 339 typedef slice_allocator<U> other;
83 }; 340 };
84 341
85 slice_allocator () throw () { } 342 slice_allocator () throw () { }
86 slice_allocator (const slice_allocator &o) throw () { } 343 slice_allocator (const slice_allocator &) throw () { }
87 template<typename Tp2> 344 template<typename Tp2>
88 slice_allocator (const slice_allocator<Tp2> &) throw () { } 345 slice_allocator (const slice_allocator<Tp2> &) throw () { }
89 346
90 ~slice_allocator () { } 347 ~slice_allocator () { }
91 348
100 void deallocate (pointer p, size_type n) 357 void deallocate (pointer p, size_type n)
101 { 358 {
102 sfree<Tp> (p, n); 359 sfree<Tp> (p, n);
103 } 360 }
104 361
105 size_type max_size ()const throw () 362 size_type max_size () const throw ()
106 { 363 {
107 return size_t (-1) / sizeof (Tp); 364 return size_t (-1) / sizeof (Tp);
108 } 365 }
109 366
110 void construct (pointer p, const Tp &val) 367 void construct (pointer p, const Tp &val)
116 { 373 {
117 p->~Tp (); 374 p->~Tp ();
118 } 375 }
119}; 376};
120 377
378// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
379// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
380// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
381struct tausworthe_random_generator
382{
383 // generator
384 uint32_t state [4];
385
386 void operator =(const tausworthe_random_generator &src)
387 {
388 state [0] = src.state [0];
389 state [1] = src.state [1];
390 state [2] = src.state [2];
391 state [3] = src.state [3];
392 }
393
394 void seed (uint32_t seed);
395 uint32_t next ();
396
397 // uniform distribution, 0 .. max (0, num - 1)
398 uint32_t operator ()(uint32_t num)
399 {
400 return is_constant (num)
401 ? (next () * (uint64_t)num) >> 32U
402 : get_range (num);
403 }
404
405 // return a number within (min .. max)
406 int operator () (int r_min, int r_max)
407 {
408 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
409 ? r_min + operator ()(r_max - r_min + 1)
410 : get_range (r_min, r_max);
411 }
412
413 double operator ()()
414 {
415 return this->next () / (double)0xFFFFFFFFU;
416 }
417
418protected:
419 uint32_t get_range (uint32_t r_max);
420 int get_range (int r_min, int r_max);
421};
422
423typedef tausworthe_random_generator rand_gen;
424
425extern rand_gen rndm, rmg_rndm;
426
427INTERFACE_CLASS (attachable)
121struct refcounted 428struct refcnt_base
122{ 429{
123 refcounted () : refcnt (0) { } 430 typedef int refcnt_t;
124// virtual ~refcounted (); 431 mutable refcnt_t ACC (RW, refcnt);
432
125 void refcnt_inc () { ++refcnt; } 433 MTH void refcnt_inc () const { ++refcnt; }
126 void refcnt_dec () { --refcnt; } 434 MTH void refcnt_dec () const { --refcnt; }
127 bool dead () { return refcnt == 0; } 435
128 mutable int refcnt; 436 refcnt_base () : refcnt (0) { }
129#if 0
130private:
131 static refcounted *rc_first;
132 refcounted *rc_next;
133#endif
134}; 437};
438
439// to avoid branches with more advanced compilers
440extern refcnt_base::refcnt_t refcnt_dummy;
135 441
136template<class T> 442template<class T>
137struct refptr 443struct refptr
138{ 444{
445 // p if not null
446 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
447
448 void refcnt_dec ()
449 {
450 if (!is_constant (p))
451 --*refcnt_ref ();
452 else if (p)
453 --p->refcnt;
454 }
455
456 void refcnt_inc ()
457 {
458 if (!is_constant (p))
459 ++*refcnt_ref ();
460 else if (p)
461 ++p->refcnt;
462 }
463
139 T *p; 464 T *p;
140 465
141 refptr () : p(0) { } 466 refptr () : p(0) { }
142 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 467 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
143 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 468 refptr (T *p) : p(p) { refcnt_inc (); }
144 ~refptr () { if (p) p->refcnt_dec (); } 469 ~refptr () { refcnt_dec (); }
145 470
146 const refptr<T> &operator =(T *o) 471 const refptr<T> &operator =(T *o)
147 { 472 {
473 // if decrementing ever destroys we need to reverse the order here
148 if (p) p->refcnt_dec (); 474 refcnt_dec ();
149 p = o; 475 p = o;
150 if (p) p->refcnt_inc (); 476 refcnt_inc ();
151
152 return *this; 477 return *this;
153 } 478 }
154 479
155 const refptr<T> &operator =(const refptr<T> o) 480 const refptr<T> &operator =(const refptr<T> &o)
156 { 481 {
157 *this = o.p; 482 *this = o.p;
158 return *this; 483 return *this;
159 } 484 }
160 485
161 T &operator * () const { return *p; } 486 T &operator * () const { return *p; }
162 T *operator ->() const { return p; } 487 T *operator ->() const { return p; }
163 488
164 operator T *() const { return p; } 489 operator T *() const { return p; }
165}; 490};
491
492typedef refptr<maptile> maptile_ptr;
493typedef refptr<object> object_ptr;
494typedef refptr<archetype> arch_ptr;
495typedef refptr<client> client_ptr;
496typedef refptr<player> player_ptr;
166 497
167struct str_hash 498struct str_hash
168{ 499{
169 std::size_t operator ()(const char *s) const 500 std::size_t operator ()(const char *s) const
170 { 501 {
196 { 527 {
197 return !strcmp (a, b); 528 return !strcmp (a, b);
198 } 529 }
199}; 530};
200 531
201#include <vector> 532// Mostly the same as std::vector, but insert/erase can reorder
202 533// the elements, making append(=insert)/remove O(1) instead of O(n).
534//
535// NOTE: only some forms of erase are available
203template<class obj> 536template<class T>
204struct unordered_vector : std::vector<obj, slice_allocator<obj> > 537struct unordered_vector : std::vector<T, slice_allocator<T> >
205{ 538{
206 typedef typename unordered_vector::iterator iterator; 539 typedef typename unordered_vector::iterator iterator;
207 540
208 void erase (unsigned int pos) 541 void erase (unsigned int pos)
209 { 542 {
217 { 550 {
218 erase ((unsigned int )(i - this->begin ())); 551 erase ((unsigned int )(i - this->begin ()));
219 } 552 }
220}; 553};
221 554
222template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 555// This container blends advantages of linked lists
223template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 556// (efficiency) with vectors (random access) by
224template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 557// by using an unordered vector and storing the vector
558// index inside the object.
559//
560// + memory-efficient on most 64 bit archs
561// + O(1) insert/remove
562// + free unique (but varying) id for inserted objects
563// + cache-friendly iteration
564// - only works for pointers to structs
565//
566// NOTE: only some forms of erase/insert are available
567typedef int object_vector_index;
225 568
226template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 569template<class T, object_vector_index T::*indexmember>
570struct object_vector : std::vector<T *, slice_allocator<T *> >
571{
572 typedef typename object_vector::iterator iterator;
573
574 bool contains (const T *obj) const
575 {
576 return obj->*indexmember;
577 }
578
579 iterator find (const T *obj)
580 {
581 return obj->*indexmember
582 ? this->begin () + obj->*indexmember - 1
583 : this->end ();
584 }
585
586 void push_back (T *obj)
587 {
588 std::vector<T *, slice_allocator<T *> >::push_back (obj);
589 obj->*indexmember = this->size ();
590 }
591
592 void insert (T *obj)
593 {
594 push_back (obj);
595 }
596
597 void insert (T &obj)
598 {
599 insert (&obj);
600 }
601
602 void erase (T *obj)
603 {
604 unsigned int pos = obj->*indexmember;
605 obj->*indexmember = 0;
606
607 if (pos < this->size ())
608 {
609 (*this)[pos - 1] = (*this)[this->size () - 1];
610 (*this)[pos - 1]->*indexmember = pos;
611 }
612
613 this->pop_back ();
614 }
615
616 void erase (T &obj)
617 {
618 erase (&obj);
619 }
620};
227 621
228// basically does what strncpy should do, but appends "..." to strings exceeding length 622// basically does what strncpy should do, but appends "..." to strings exceeding length
229void assign (char *dst, const char *src, int maxlen); 623void assign (char *dst, const char *src, int maxlen);
230 624
231// type-safe version of assign 625// type-safe version of assign
235 assign ((char *)&dst, src, N); 629 assign ((char *)&dst, src, N);
236} 630}
237 631
238typedef double tstamp; 632typedef double tstamp;
239 633
240// return current time as timestampe 634// return current time as timestamp
241tstamp now (); 635tstamp now ();
242 636
637int similar_direction (int a, int b);
638
639// like sprintf, but returns a "static" buffer
640const char *format (const char *format, ...);
641
642/////////////////////////////////////////////////////////////////////////////
643// threads, very very thin wrappers around pthreads
644
645struct thread
646{
647 pthread_t id;
648
649 void start (void *(*start_routine)(void *), void *arg = 0);
650
651 void cancel ()
652 {
653 pthread_cancel (id);
654 }
655
656 void *join ()
657 {
658 void *ret;
659
660 if (pthread_join (id, &ret))
661 cleanup ("pthread_join failed", 1);
662
663 return ret;
664 }
665};
666
667// note that mutexes are not classes
668typedef pthread_mutex_t smutex;
669
670#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
671 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
672#else
673 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
243#endif 674#endif
244 675
676#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
677#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
678#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
679
680typedef pthread_cond_t scond;
681
682#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
683#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
684#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
685#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
686
687#endif
688

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines