ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.20 by root, Sun Dec 17 23:10:35 2006 UTC vs.
Revision 1.96 by root, Wed Nov 11 03:52:44 2009 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4#if __GNUC__ >= 3 26#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 27
28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32#include <pthread.h>
33
34#include <cstddef>
35#include <cmath>
36#include <new>
37#include <vector>
38
39#include <glib.h>
40
41#include <shstr.h>
42#include <traits.h>
43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr)
59
60// very ugly macro that basically declares and initialises a variable
61// that is in scope for the next statement only
62// works only for stuff that can be assigned 0 and converts to false
63// (note: works great for pointers)
64// most ugly macro I ever wrote
65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66
67// in range including end
68#define IN_RANGE_INC(val,beg,end) \
69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70
71// in range excluding end
72#define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74
75void cleanup (const char *cause, bool make_core = false);
76void fork_abort (const char *msg);
77
78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
79// as a is often a constant while b is the variable. it is still a bug, though.
80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99
100// sign0 returns -1, 0 or +1
101template<typename T>
102static inline T sign0 (T v) { return v ? sign (v) : 0; }
103
104// div* only work correctly for div > 0
105// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
106template<typename T> static inline T div (T val, T div)
107{
108 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
109}
110// div, round-up
111template<typename T> static inline T div_ru (T val, T div)
112{
113 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
114}
115// div, round-down
116template<typename T> static inline T div_rd (T val, T div)
117{
118 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
119}
120
121// lerp* only work correctly for min_in < max_in
122// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
123template<typename T>
124static inline T
125lerp (T val, T min_in, T max_in, T min_out, T max_out)
126{
127 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
128}
129
130// lerp, round-down
131template<typename T>
132static inline T
133lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
134{
135 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
136}
137
138// lerp, round-up
139template<typename T>
140static inline T
141lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
142{
143 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
144}
145
146// lots of stuff taken from FXT
147
148/* Rotate right. This is used in various places for checksumming */
149//TODO: that sucks, use a better checksum algo
150static inline uint32_t
151rotate_right (uint32_t c, uint32_t count = 1)
152{
153 return (c << (32 - count)) | (c >> count);
154}
155
156static inline uint32_t
157rotate_left (uint32_t c, uint32_t count = 1)
158{
159 return (c >> (32 - count)) | (c << count);
160}
161
162// Return abs(a-b)
163// Both a and b must not have the most significant bit set
164static inline uint32_t
165upos_abs_diff (uint32_t a, uint32_t b)
166{
167 long d1 = b - a;
168 long d2 = (d1 & (d1 >> 31)) << 1;
169
170 return d1 - d2; // == (b - d) - (a + d);
171}
172
173// Both a and b must not have the most significant bit set
174static inline uint32_t
175upos_min (uint32_t a, uint32_t b)
176{
177 int32_t d = b - a;
178 d &= d >> 31;
179 return a + d;
180}
181
182// Both a and b must not have the most significant bit set
183static inline uint32_t
184upos_max (uint32_t a, uint32_t b)
185{
186 int32_t d = b - a;
187 d &= d >> 31;
188 return b - d;
189}
190
191// this is much faster than crossfire's original algorithm
192// on modern cpus
193inline int
194isqrt (int n)
195{
196 return (int)sqrtf ((float)n);
197}
198
199// this is kind of like the ^^ operator, if it would exist, without sequence point.
200// more handy than it looks like, due to the implicit !! done on its arguments
201inline bool
202logical_xor (bool a, bool b)
203{
204 return a != b;
205}
206
207inline bool
208logical_implies (bool a, bool b)
209{
210 return a <= b;
211}
212
213// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
214#if 0
215// and has a max. error of 6 in the range -100..+100.
6#else 216#else
7# define is_constant(c) 0 217// and has a max. error of 9 in the range -100..+100.
8#endif 218#endif
219inline int
220idistance (int dx, int dy)
221{
222 unsigned int dx_ = abs (dx);
223 unsigned int dy_ = abs (dy);
9 224
10#include <cstddef> 225#if 0
226 return dx_ > dy_
227 ? (dx_ * 61685 + dy_ * 26870) >> 16
228 : (dy_ * 61685 + dx_ * 26870) >> 16;
229#else
230 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
231#endif
232}
11 233
12#include <glib.h> 234/*
235 * absdir(int): Returns a number between 1 and 8, which represent
236 * the "absolute" direction of a number (it actually takes care of
237 * "overflow" in previous calculations of a direction).
238 */
239inline int
240absdir (int d)
241{
242 return ((d - 1) & 7) + 1;
243}
13 244
14// use a gcc extension for auto declarations until ISO C++ sanctifies them 245// avoid ctz name because netbsd or freebsd spams it's namespace with it
15#define AUTODECL(var,expr) typeof(expr) var = (expr) 246#if GCC_VERSION(3,4)
247static inline int least_significant_bit (uint32_t x)
248{
249 return __builtin_ctz (x);
250}
251#else
252int least_significant_bit (uint32_t x);
253#endif
254
255#define for_all_bits_sparse_32(mask, idxvar) \
256 for (uint32_t idxvar, mask_ = mask; \
257 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
258
259extern ssize_t slice_alloc; // statistics
260
261void *salloc_ (int n) throw (std::bad_alloc);
262void *salloc_ (int n, void *src) throw (std::bad_alloc);
263
264// strictly the same as g_slice_alloc, but never returns 0
265template<typename T>
266inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
267
268// also copies src into the new area, like "memdup"
269// if src is 0, clears the memory
270template<typename T>
271inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
272
273// clears the memory
274template<typename T>
275inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
276
277// for symmetry
278template<typename T>
279inline void sfree (T *ptr, int n = 1) throw ()
280{
281 if (expect_true (ptr))
282 {
283 slice_alloc -= n * sizeof (T);
284 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
285 g_slice_free1 (n * sizeof (T), (void *)ptr);
286 assert (slice_alloc >= 0);//D
287 }
288}
289
290// nulls the pointer
291template<typename T>
292inline void sfree0 (T *&ptr, int n = 1) throw ()
293{
294 sfree<T> (ptr, n);
295 ptr = 0;
296}
16 297
17// makes dynamically allocated objects zero-initialised 298// makes dynamically allocated objects zero-initialised
18struct zero_initialised 299struct zero_initialised
19{ 300{
20 void *operator new (size_t s, void *p) 301 void *operator new (size_t s, void *p)
23 return p; 304 return p;
24 } 305 }
25 306
26 void *operator new (size_t s) 307 void *operator new (size_t s)
27 { 308 {
28 return g_slice_alloc0 (s); 309 return salloc0<char> (s);
29 } 310 }
30 311
31 void *operator new[] (size_t s) 312 void *operator new[] (size_t s)
32 { 313 {
33 return g_slice_alloc0 (s); 314 return salloc0<char> (s);
34 } 315 }
35 316
36 void operator delete (void *p, size_t s) 317 void operator delete (void *p, size_t s)
37 { 318 {
38 g_slice_free1 (s, p); 319 sfree ((char *)p, s);
39 } 320 }
40 321
41 void operator delete[] (void *p, size_t s) 322 void operator delete[] (void *p, size_t s)
42 { 323 {
43 g_slice_free1 (s, p); 324 sfree ((char *)p, s);
44 } 325 }
45}; 326};
46 327
47void *salloc_ (int n) throw (std::bad_alloc); 328// makes dynamically allocated objects zero-initialised
48void *salloc_ (int n, void *src) throw (std::bad_alloc); 329struct slice_allocated
49
50// strictly the same as g_slice_alloc, but never returns 0
51template<typename T>
52inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
53
54// also copies src into the new area, like "memdup"
55// if src is 0, clears the memory
56template<typename T>
57inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
58
59// for symmetry
60template<typename T>
61inline void sfree (T *ptr, int n = 1) throw ()
62{ 330{
63 g_slice_free1 (n * sizeof (T), (void *)ptr); 331 void *operator new (size_t s, void *p)
64} 332 {
333 return p;
334 }
335
336 void *operator new (size_t s)
337 {
338 return salloc<char> (s);
339 }
340
341 void *operator new[] (size_t s)
342 {
343 return salloc<char> (s);
344 }
345
346 void operator delete (void *p, size_t s)
347 {
348 sfree ((char *)p, s);
349 }
350
351 void operator delete[] (void *p, size_t s)
352 {
353 sfree ((char *)p, s);
354 }
355};
65 356
66// a STL-compatible allocator that uses g_slice 357// a STL-compatible allocator that uses g_slice
67// boy, this is verbose 358// boy, this is verbose
68template<typename Tp> 359template<typename Tp>
69struct slice_allocator 360struct slice_allocator
81 { 372 {
82 typedef slice_allocator<U> other; 373 typedef slice_allocator<U> other;
83 }; 374 };
84 375
85 slice_allocator () throw () { } 376 slice_allocator () throw () { }
86 slice_allocator (const slice_allocator &o) throw () { } 377 slice_allocator (const slice_allocator &) throw () { }
87 template<typename Tp2> 378 template<typename Tp2>
88 slice_allocator (const slice_allocator<Tp2> &) throw () { } 379 slice_allocator (const slice_allocator<Tp2> &) throw () { }
89 380
90 ~slice_allocator () { } 381 ~slice_allocator () { }
91 382
100 void deallocate (pointer p, size_type n) 391 void deallocate (pointer p, size_type n)
101 { 392 {
102 sfree<Tp> (p, n); 393 sfree<Tp> (p, n);
103 } 394 }
104 395
105 size_type max_size ()const throw () 396 size_type max_size () const throw ()
106 { 397 {
107 return size_t (-1) / sizeof (Tp); 398 return size_t (-1) / sizeof (Tp);
108 } 399 }
109 400
110 void construct (pointer p, const Tp &val) 401 void construct (pointer p, const Tp &val)
116 { 407 {
117 p->~Tp (); 408 p->~Tp ();
118 } 409 }
119}; 410};
120 411
412// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
413// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
414// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
415struct tausworthe_random_generator
416{
417 uint32_t state [4];
418
419 void operator =(const tausworthe_random_generator &src)
420 {
421 state [0] = src.state [0];
422 state [1] = src.state [1];
423 state [2] = src.state [2];
424 state [3] = src.state [3];
425 }
426
427 void seed (uint32_t seed);
428 uint32_t next ();
429};
430
431// Xorshift RNGs, George Marsaglia
432// http://www.jstatsoft.org/v08/i14/paper
433// this one is about 40% faster than the tausworthe one above (i.e. not much),
434// despite the inlining, and has the issue of only creating 2**32-1 numbers.
435// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
436struct xorshift_random_generator
437{
438 uint32_t x, y;
439
440 void operator =(const xorshift_random_generator &src)
441 {
442 x = src.x;
443 y = src.y;
444 }
445
446 void seed (uint32_t seed)
447 {
448 x = seed;
449 y = seed * 69069U;
450 }
451
452 uint32_t next ()
453 {
454 uint32_t t = x ^ (x << 10);
455 x = y;
456 y = y ^ (y >> 13) ^ t ^ (t >> 10);
457 return y;
458 }
459};
460
461template<class generator>
462struct random_number_generator : generator
463{
464 // uniform distribution, 0 .. max (0, num - 1)
465 uint32_t operator ()(uint32_t num)
466 {
467 return !is_constant (num) ? get_range (num) // non-constant
468 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
469 : this->next () & (num - 1); // constant, power-of-two
470 }
471
472 // return a number within (min .. max)
473 int operator () (int r_min, int r_max)
474 {
475 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
476 ? r_min + operator ()(r_max - r_min + 1)
477 : get_range (r_min, r_max);
478 }
479
480 double operator ()()
481 {
482 return this->next () / (double)0xFFFFFFFFU;
483 }
484
485protected:
486 uint32_t get_range (uint32_t r_max);
487 int get_range (int r_min, int r_max);
488};
489
490typedef random_number_generator<tausworthe_random_generator> rand_gen;
491
492extern rand_gen rndm, rmg_rndm;
493
494INTERFACE_CLASS (attachable)
121struct refcounted 495struct refcnt_base
122{ 496{
123 refcounted () : refcnt (0) { } 497 typedef int refcnt_t;
124// virtual ~refcounted (); 498 mutable refcnt_t ACC (RW, refcnt);
499
125 void refcnt_inc () { ++refcnt; } 500 MTH void refcnt_inc () const { ++refcnt; }
126 void refcnt_dec () { --refcnt; } 501 MTH void refcnt_dec () const { --refcnt; }
127 bool dead () { return refcnt == 0; } 502
128 mutable int refcnt; 503 refcnt_base () : refcnt (0) { }
129#if 0
130private:
131 static refcounted *rc_first;
132 refcounted *rc_next;
133#endif
134}; 504};
505
506// to avoid branches with more advanced compilers
507extern refcnt_base::refcnt_t refcnt_dummy;
135 508
136template<class T> 509template<class T>
137struct refptr 510struct refptr
138{ 511{
512 // p if not null
513 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
514
515 void refcnt_dec ()
516 {
517 if (!is_constant (p))
518 --*refcnt_ref ();
519 else if (p)
520 --p->refcnt;
521 }
522
523 void refcnt_inc ()
524 {
525 if (!is_constant (p))
526 ++*refcnt_ref ();
527 else if (p)
528 ++p->refcnt;
529 }
530
139 T *p; 531 T *p;
140 532
141 refptr () : p(0) { } 533 refptr () : p(0) { }
142 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 534 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
143 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 535 refptr (T *p) : p(p) { refcnt_inc (); }
144 ~refptr () { if (p) p->refcnt_dec (); } 536 ~refptr () { refcnt_dec (); }
145 537
146 const refptr<T> &operator =(T *o) 538 const refptr<T> &operator =(T *o)
147 { 539 {
540 // if decrementing ever destroys we need to reverse the order here
148 if (p) p->refcnt_dec (); 541 refcnt_dec ();
149 p = o; 542 p = o;
150 if (p) p->refcnt_inc (); 543 refcnt_inc ();
151
152 return *this; 544 return *this;
153 } 545 }
154 546
155 const refptr<T> &operator =(const refptr<T> o) 547 const refptr<T> &operator =(const refptr<T> &o)
156 { 548 {
157 *this = o.p; 549 *this = o.p;
158 return *this; 550 return *this;
159 } 551 }
160 552
161 T &operator * () const { return *p; } 553 T &operator * () const { return *p; }
162 T *operator ->() const { return p; } 554 T *operator ->() const { return p; }
163 555
164 operator T *() const { return p; } 556 operator T *() const { return p; }
165}; 557};
166 558
559typedef refptr<maptile> maptile_ptr;
560typedef refptr<object> object_ptr;
561typedef refptr<archetype> arch_ptr;
562typedef refptr<client> client_ptr;
563typedef refptr<player> player_ptr;
564
565#define STRHSH_NULL 2166136261
566
567static inline uint32_t
568strhsh (const char *s)
569{
570 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
571 // it is about twice as fast as the one-at-a-time one,
572 // with good distribution.
573 // FNV-1a is faster on many cpus because the multiplication
574 // runs concurrently with the looping logic.
575 uint32_t hash = STRHSH_NULL;
576
577 while (*s)
578 hash = (hash ^ *s++) * 16777619;
579
580 return hash;
581}
582
583static inline uint32_t
584memhsh (const char *s, size_t len)
585{
586 uint32_t hash = STRHSH_NULL;
587
588 while (len--)
589 hash = (hash ^ *s++) * 16777619;
590
591 return hash;
592}
593
167struct str_hash 594struct str_hash
168{ 595{
169 std::size_t operator ()(const char *s) const 596 std::size_t operator ()(const char *s) const
170 { 597 {
171 unsigned long hash = 0;
172
173 /* use the one-at-a-time hash function, which supposedly is
174 * better than the djb2-like one used by perl5.005, but
175 * certainly is better then the bug used here before.
176 * see http://burtleburtle.net/bob/hash/doobs.html
177 */
178 while (*s)
179 {
180 hash += *s++;
181 hash += hash << 10;
182 hash ^= hash >> 6;
183 }
184
185 hash += hash << 3;
186 hash ^= hash >> 11;
187 hash += hash << 15;
188
189 return hash; 598 return strhsh (s);
599 }
600
601 std::size_t operator ()(const shstr &s) const
602 {
603 return strhsh (s);
190 } 604 }
191}; 605};
192 606
193struct str_equal 607struct str_equal
194{ 608{
196 { 610 {
197 return !strcmp (a, b); 611 return !strcmp (a, b);
198 } 612 }
199}; 613};
200 614
201#include <vector> 615// Mostly the same as std::vector, but insert/erase can reorder
202 616// the elements, making append(=insert)/remove O(1) instead of O(n).
617//
618// NOTE: only some forms of erase are available
203template<class obj> 619template<class T>
204struct unordered_vector : std::vector<obj, slice_allocator<obj> > 620struct unordered_vector : std::vector<T, slice_allocator<T> >
205{ 621{
206 typedef typename unordered_vector::iterator iterator; 622 typedef typename unordered_vector::iterator iterator;
207 623
208 void erase (unsigned int pos) 624 void erase (unsigned int pos)
209 { 625 {
217 { 633 {
218 erase ((unsigned int )(i - this->begin ())); 634 erase ((unsigned int )(i - this->begin ()));
219 } 635 }
220}; 636};
221 637
222template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 638// This container blends advantages of linked lists
223template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 639// (efficiency) with vectors (random access) by
224template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 640// by using an unordered vector and storing the vector
641// index inside the object.
642//
643// + memory-efficient on most 64 bit archs
644// + O(1) insert/remove
645// + free unique (but varying) id for inserted objects
646// + cache-friendly iteration
647// - only works for pointers to structs
648//
649// NOTE: only some forms of erase/insert are available
650typedef int object_vector_index;
225 651
226template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 652template<class T, object_vector_index T::*indexmember>
653struct object_vector : std::vector<T *, slice_allocator<T *> >
654{
655 typedef typename object_vector::iterator iterator;
656
657 bool contains (const T *obj) const
658 {
659 return obj->*indexmember;
660 }
661
662 iterator find (const T *obj)
663 {
664 return obj->*indexmember
665 ? this->begin () + obj->*indexmember - 1
666 : this->end ();
667 }
668
669 void push_back (T *obj)
670 {
671 std::vector<T *, slice_allocator<T *> >::push_back (obj);
672 obj->*indexmember = this->size ();
673 }
674
675 void insert (T *obj)
676 {
677 push_back (obj);
678 }
679
680 void insert (T &obj)
681 {
682 insert (&obj);
683 }
684
685 void erase (T *obj)
686 {
687 unsigned int pos = obj->*indexmember;
688 obj->*indexmember = 0;
689
690 if (pos < this->size ())
691 {
692 (*this)[pos - 1] = (*this)[this->size () - 1];
693 (*this)[pos - 1]->*indexmember = pos;
694 }
695
696 this->pop_back ();
697 }
698
699 void erase (T &obj)
700 {
701 erase (&obj);
702 }
703};
227 704
228// basically does what strncpy should do, but appends "..." to strings exceeding length 705// basically does what strncpy should do, but appends "..." to strings exceeding length
706// returns the number of bytes actually used (including \0)
229void assign (char *dst, const char *src, int maxlen); 707int assign (char *dst, const char *src, int maxsize);
230 708
231// type-safe version of assign 709// type-safe version of assign
232template<int N> 710template<int N>
233inline void assign (char (&dst)[N], const char *src) 711inline int assign (char (&dst)[N], const char *src)
234{ 712{
235 assign ((char *)&dst, src, N); 713 return assign ((char *)&dst, src, N);
236} 714}
237 715
238typedef double tstamp; 716typedef double tstamp;
239 717
240// return current time as timestampe 718// return current time as timestamp
241tstamp now (); 719tstamp now ();
242 720
721int similar_direction (int a, int b);
722
723// like v?sprintf, but returns a "static" buffer
724char *vformat (const char *format, va_list ap);
725char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
726
727// safety-check player input which will become object->msg
728bool msg_is_safe (const char *msg);
729
730/////////////////////////////////////////////////////////////////////////////
731// threads, very very thin wrappers around pthreads
732
733struct thread
734{
735 pthread_t id;
736
737 void start (void *(*start_routine)(void *), void *arg = 0);
738
739 void cancel ()
740 {
741 pthread_cancel (id);
742 }
743
744 void *join ()
745 {
746 void *ret;
747
748 if (pthread_join (id, &ret))
749 cleanup ("pthread_join failed", 1);
750
751 return ret;
752 }
753};
754
755// note that mutexes are not classes
756typedef pthread_mutex_t smutex;
757
758#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
759 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
760#else
761 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
243#endif 762#endif
244 763
764#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
765#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
766#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
767
768typedef pthread_cond_t scond;
769
770#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
771#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
772#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
773#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
774
775#endif
776

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines