ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.24 by root, Mon Dec 25 11:25:49 2006 UTC vs.
Revision 1.127 by root, Sat Nov 17 23:40:02 2018 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 *
7 * Deliantra is free software: you can redistribute it and/or modify it under
8 * the terms of the Affero GNU General Public License as published by the
9 * Free Software Foundation, either version 3 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the Affero GNU General Public License
18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
1#ifndef UTIL_H__ 24#ifndef UTIL_H__
2#define UTIL_H__ 25#define UTIL_H__
3 26
4#if __GNUC__ >= 3 27#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 28
29#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
30#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
31#define PREFER_MALLOC 0 // use malloc and not the slice allocator
32
33#include <pthread.h>
34
35#include <cstddef>
36#include <cmath>
37#include <new>
38#include <vector>
39
40#include <glib.h>
41
42#include <shstr.h>
43#include <traits.h>
44
45#if DEBUG_SALLOC
46# define g_slice_alloc0(s) debug_slice_alloc0(s)
47# define g_slice_alloc(s) debug_slice_alloc(s)
48# define g_slice_free1(s,p) debug_slice_free1(s,p)
49void *g_slice_alloc (unsigned long size);
50void *g_slice_alloc0 (unsigned long size);
51void g_slice_free1 (unsigned long size, void *ptr);
52#elif PREFER_MALLOC
53# define g_slice_alloc0(s) calloc (1, (s))
54# define g_slice_alloc(s) malloc ((s))
55# define g_slice_free1(s,p) free ((p))
56#endif
57
58// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
59#define auto(var,expr) decltype(expr) var = (expr)
60
61#if cplusplus_does_not_suck /* still sucks in codesize with gcc 6, although local types work now */
62// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
63template<typename T, int N>
64static inline int array_length (const T (&arr)[N])
65{
66 return N;
67}
6#else 68#else
7# define is_constant(c) 0 69#define array_length(name) (sizeof (name) / sizeof (name [0]))
8#endif 70#endif
9 71
10#include <cstddef> 72// very ugly macro that basically declares and initialises a variable
73// that is in scope for the next statement only
74// works only for stuff that can be assigned 0 and converts to false
75// (note: works great for pointers)
76// most ugly macro I ever wrote
77#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
11 78
12#include <glib.h> 79// in range including end
80#define IN_RANGE_INC(val,beg,end) \
81 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
13 82
14// use a gcc extension for auto declarations until ISO C++ sanctifies them 83// in range excluding end
15#define AUTODECL(var,expr) typeof(expr) var = (expr) 84#define IN_RANGE_EXC(val,beg,end) \
85 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
86
87ecb_cold void cleanup (const char *cause, bool make_core = false);
88ecb_cold void fork_abort (const char *msg);
89
90// rationale for using (U) not (T) is to reduce signed/unsigned issues,
91// as a is often a constant while b is the variable. it is still a bug, though.
92template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
93template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
94template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
95
96template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
97template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
98template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
99
100template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
101
102template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
103template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
104
105// sign returns -1 or +1
106template<typename T>
107static inline T sign (T v) { return v < 0 ? -1 : +1; }
108// relies on 2c representation
109template<>
110inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
111template<>
112inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
113template<>
114inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
115
116// sign0 returns -1, 0 or +1
117template<typename T>
118static inline T sign0 (T v) { return v ? sign (v) : 0; }
119
120//clashes with C++0x
121template<typename T, typename U>
122static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
123
124// div* only work correctly for div > 0
125// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126template<typename T> static inline T div (T val, T div)
127{
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129}
130
131template<> inline float div (float val, float div) { return val / div; }
132template<> inline double div (double val, double div) { return val / div; }
133
134// div, round-up
135template<typename T> static inline T div_ru (T val, T div)
136{
137 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
138}
139// div, round-down
140template<typename T> static inline T div_rd (T val, T div)
141{
142 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
143}
144
145// lerp* only work correctly for min_in < max_in
146// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
147template<typename T>
148static inline T
149lerp (T val, T min_in, T max_in, T min_out, T max_out)
150{
151 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
152}
153
154// lerp, round-down
155template<typename T>
156static inline T
157lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
158{
159 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
160}
161
162// lerp, round-up
163template<typename T>
164static inline T
165lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
166{
167 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
168}
169
170// lots of stuff taken from FXT
171
172/* Rotate right. This is used in various places for checksumming */
173//TODO: that sucks, use a better checksum algo
174static inline uint32_t
175rotate_right (uint32_t c, uint32_t count = 1)
176{
177 return (c << (32 - count)) | (c >> count);
178}
179
180static inline uint32_t
181rotate_left (uint32_t c, uint32_t count = 1)
182{
183 return (c >> (32 - count)) | (c << count);
184}
185
186// Return abs(a-b)
187// Both a and b must not have the most significant bit set
188static inline uint32_t
189upos_abs_diff (uint32_t a, uint32_t b)
190{
191 long d1 = b - a;
192 long d2 = (d1 & (d1 >> 31)) << 1;
193
194 return d1 - d2; // == (b - d) - (a + d);
195}
196
197// Both a and b must not have the most significant bit set
198static inline uint32_t
199upos_min (uint32_t a, uint32_t b)
200{
201 int32_t d = b - a;
202 d &= d >> 31;
203 return a + d;
204}
205
206// Both a and b must not have the most significant bit set
207static inline uint32_t
208upos_max (uint32_t a, uint32_t b)
209{
210 int32_t d = b - a;
211 d &= d >> 31;
212 return b - d;
213}
214
215// this is much faster than crossfire's original algorithm
216// on modern cpus
217inline int
218isqrt (int n)
219{
220 return (int)sqrtf ((float)n);
221}
222
223// this is kind of like the ^^ operator, if it would exist, without sequence point.
224// more handy than it looks like, due to the implicit !! done on its arguments
225inline bool
226logical_xor (bool a, bool b)
227{
228 return a != b;
229}
230
231inline bool
232logical_implies (bool a, bool b)
233{
234 return a <= b;
235}
236
237// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
238#if 0
239// and has a max. error of 6 in the range -100..+100.
240#else
241// and has a max. error of 9 in the range -100..+100.
242#endif
243inline int
244idistance (int dx, int dy)
245{
246 unsigned int dx_ = abs (dx);
247 unsigned int dy_ = abs (dy);
248
249#if 0
250 return dx_ > dy_
251 ? (dx_ * 61685 + dy_ * 26870) >> 16
252 : (dy_ * 61685 + dx_ * 26870) >> 16;
253#else
254 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
255#endif
256}
257
258// can be substantially faster than floor, if your value range allows for it
259template<typename T>
260inline T
261fastfloor (T x)
262{
263 return std::floor (x);
264}
265
266inline float
267fastfloor (float x)
268{
269 return sint32(x) - (x < 0);
270}
271
272inline double
273fastfloor (double x)
274{
275 return sint64(x) - (x < 0);
276}
277
278/*
279 * absdir(int): Returns a number between 1 and 8, which represent
280 * the "absolute" direction of a number (it actually takes care of
281 * "overflow" in previous calculations of a direction).
282 */
283inline int
284absdir (int d)
285{
286 return ((d - 1) & 7) + 1;
287}
288
289#define for_all_bits_sparse_32(mask, idxvar) \
290 for (uint32_t idxvar, mask_ = mask; \
291 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
292
293extern ssize_t slice_alloc; // statistics
294
295void *salloc_ (int n);
296void *salloc_ (int n, void *src);
297
298// strictly the same as g_slice_alloc, but never returns 0
299template<typename T>
300inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
301
302// also copies src into the new area, like "memdup"
303// if src is 0, clears the memory
304template<typename T>
305inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
306
307// clears the memory
308template<typename T>
309inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
310
311// for symmetry
312template<typename T>
313inline void sfree (T *ptr, int n = 1) noexcept
314{
315 if (expect_true (ptr))
316 {
317 slice_alloc -= n * sizeof (T);
318 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
319 g_slice_free1 (n * sizeof (T), (void *)ptr);
320 }
321}
322
323// nulls the pointer
324template<typename T>
325inline void sfree0 (T *&ptr, int n = 1) noexcept
326{
327 sfree<T> (ptr, n);
328 ptr = 0;
329}
16 330
17// makes dynamically allocated objects zero-initialised 331// makes dynamically allocated objects zero-initialised
18struct zero_initialised 332struct zero_initialised
19{ 333{
20 void *operator new (size_t s, void *p) 334 void *operator new (size_t s, void *p)
23 return p; 337 return p;
24 } 338 }
25 339
26 void *operator new (size_t s) 340 void *operator new (size_t s)
27 { 341 {
28 return g_slice_alloc0 (s); 342 return salloc0<char> (s);
29 } 343 }
30 344
31 void *operator new[] (size_t s) 345 void *operator new[] (size_t s)
32 { 346 {
33 return g_slice_alloc0 (s); 347 return salloc0<char> (s);
34 } 348 }
35 349
36 void operator delete (void *p, size_t s) 350 void operator delete (void *p, size_t s)
37 { 351 {
38 g_slice_free1 (s, p); 352 sfree ((char *)p, s);
39 } 353 }
40 354
41 void operator delete[] (void *p, size_t s) 355 void operator delete[] (void *p, size_t s)
42 { 356 {
43 g_slice_free1 (s, p); 357 sfree ((char *)p, s);
44 } 358 }
45}; 359};
46 360
47void *salloc_ (int n) throw (std::bad_alloc); 361// makes dynamically allocated objects zero-initialised
48void *salloc_ (int n, void *src) throw (std::bad_alloc); 362struct slice_allocated
49
50// strictly the same as g_slice_alloc, but never returns 0
51template<typename T>
52inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
53
54// also copies src into the new area, like "memdup"
55// if src is 0, clears the memory
56template<typename T>
57inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
58
59// clears the memory
60template<typename T>
61inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
62
63// for symmetry
64template<typename T>
65inline void sfree (T *ptr, int n = 1) throw ()
66{ 363{
67 g_slice_free1 (n * sizeof (T), (void *)ptr); 364 void *operator new (size_t s, void *p)
68} 365 {
366 return p;
367 }
368
369 void *operator new (size_t s)
370 {
371 return salloc<char> (s);
372 }
373
374 void *operator new[] (size_t s)
375 {
376 return salloc<char> (s);
377 }
378
379 void operator delete (void *p, size_t s)
380 {
381 sfree ((char *)p, s);
382 }
383
384 void operator delete[] (void *p, size_t s)
385 {
386 sfree ((char *)p, s);
387 }
388};
69 389
70// a STL-compatible allocator that uses g_slice 390// a STL-compatible allocator that uses g_slice
71// boy, this is verbose 391// boy, this is verbose
72template<typename Tp> 392template<typename Tp>
73struct slice_allocator 393struct slice_allocator
78 typedef const Tp *const_pointer; 398 typedef const Tp *const_pointer;
79 typedef Tp &reference; 399 typedef Tp &reference;
80 typedef const Tp &const_reference; 400 typedef const Tp &const_reference;
81 typedef Tp value_type; 401 typedef Tp value_type;
82 402
83 template <class U> 403 template <class U>
84 struct rebind 404 struct rebind
85 { 405 {
86 typedef slice_allocator<U> other; 406 typedef slice_allocator<U> other;
87 }; 407 };
88 408
89 slice_allocator () throw () { } 409 slice_allocator () noexcept { }
90 slice_allocator (const slice_allocator &o) throw () { } 410 slice_allocator (const slice_allocator &) noexcept { }
91 template<typename Tp2> 411 template<typename Tp2>
92 slice_allocator (const slice_allocator<Tp2> &) throw () { } 412 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
93 413
94 ~slice_allocator () { } 414 ~slice_allocator () { }
95 415
96 pointer address (reference x) const { return &x; } 416 pointer address (reference x) const { return &x; }
97 const_pointer address (const_reference x) const { return &x; } 417 const_pointer address (const_reference x) const { return &x; }
104 void deallocate (pointer p, size_type n) 424 void deallocate (pointer p, size_type n)
105 { 425 {
106 sfree<Tp> (p, n); 426 sfree<Tp> (p, n);
107 } 427 }
108 428
109 size_type max_size ()const throw () 429 size_type max_size () const noexcept
110 { 430 {
111 return size_t (-1) / sizeof (Tp); 431 return size_t (-1) / sizeof (Tp);
112 } 432 }
113 433
114 void construct (pointer p, const Tp &val) 434 void construct (pointer p, const Tp &val)
119 void destroy (pointer p) 439 void destroy (pointer p)
120 { 440 {
121 p->~Tp (); 441 p->~Tp ();
122 } 442 }
123}; 443};
444
445// basically a memory area, but refcounted
446struct refcnt_buf
447{
448 char *data;
449
450 refcnt_buf (size_t size = 0);
451 refcnt_buf (void *data, size_t size);
452
453 refcnt_buf (const refcnt_buf &src)
454 {
455 data = src.data;
456 inc ();
457 }
458
459 ~refcnt_buf ();
460
461 refcnt_buf &operator =(const refcnt_buf &src);
462
463 operator char *()
464 {
465 return data;
466 }
467
468 size_t size () const
469 {
470 return _size ();
471 }
472
473protected:
474 enum {
475 overhead = sizeof (uint32_t) * 2
476 };
477
478 uint32_t &_size () const
479 {
480 return ((unsigned int *)data)[-2];
481 }
482
483 uint32_t &_refcnt () const
484 {
485 return ((unsigned int *)data)[-1];
486 }
487
488 void _alloc (uint32_t size)
489 {
490 data = ((char *)salloc<char> (size + overhead)) + overhead;
491 _size () = size;
492 _refcnt () = 1;
493 }
494
495 void _dealloc ();
496
497 void inc ()
498 {
499 ++_refcnt ();
500 }
501
502 void dec ()
503 {
504 if (!--_refcnt ())
505 _dealloc ();
506 }
507};
508
509INTERFACE_CLASS (attachable)
510struct refcnt_base
511{
512 typedef int refcnt_t;
513 mutable refcnt_t ACC (RW, refcnt);
514
515 MTH void refcnt_inc () const { ++refcnt; }
516 MTH void refcnt_dec () const { --refcnt; }
517
518 refcnt_base () : refcnt (0) { }
519};
520
521// to avoid branches with more advanced compilers
522extern refcnt_base::refcnt_t refcnt_dummy;
124 523
125template<class T> 524template<class T>
126struct refptr 525struct refptr
127{ 526{
527 // p if not null
528 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
529
530 void refcnt_dec ()
531 {
532 if (!ecb_is_constant (p))
533 --*refcnt_ref ();
534 else if (p)
535 --p->refcnt;
536 }
537
538 void refcnt_inc ()
539 {
540 if (!ecb_is_constant (p))
541 ++*refcnt_ref ();
542 else if (p)
543 ++p->refcnt;
544 }
545
128 T *p; 546 T *p;
129 547
130 refptr () : p(0) { } 548 refptr () : p(0) { }
131 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 549 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
132 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 550 refptr (T *p) : p(p) { refcnt_inc (); }
133 ~refptr () { if (p) p->refcnt_dec (); } 551 ~refptr () { refcnt_dec (); }
134 552
135 const refptr<T> &operator =(T *o) 553 const refptr<T> &operator =(T *o)
136 { 554 {
555 // if decrementing ever destroys we need to reverse the order here
137 if (p) p->refcnt_dec (); 556 refcnt_dec ();
138 p = o; 557 p = o;
139 if (p) p->refcnt_inc (); 558 refcnt_inc ();
140
141 return *this; 559 return *this;
142 } 560 }
143 561
144 const refptr<T> &operator =(const refptr<T> o) 562 const refptr<T> &operator =(const refptr<T> &o)
145 { 563 {
146 *this = o.p; 564 *this = o.p;
147 return *this; 565 return *this;
148 } 566 }
149 567
150 T &operator * () const { return *p; } 568 T &operator * () const { return *p; }
151 T *operator ->() const { return p; } 569 T *operator ->() const { return p; }
152 570
153 operator T *() const { return p; } 571 operator T *() const { return p; }
154}; 572};
155 573
156typedef refptr<maptile> maptile_ptr; 574typedef refptr<maptile> maptile_ptr;
157typedef refptr<object> object_ptr; 575typedef refptr<object> object_ptr;
158typedef refptr<archetype> arch_ptr; 576typedef refptr<archetype> arch_ptr;
159typedef refptr<client> client_ptr; 577typedef refptr<client> client_ptr;
160typedef refptr<player> player_ptr; 578typedef refptr<player> player_ptr;
579typedef refptr<region> region_ptr;
580
581#define STRHSH_NULL 2166136261
582
583static inline uint32_t
584strhsh (const char *s)
585{
586 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
587 // it is about twice as fast as the one-at-a-time one,
588 // with good distribution.
589 // FNV-1a is faster on many cpus because the multiplication
590 // runs concurrently with the looping logic.
591 // we modify the hash a bit to improve its distribution
592 uint32_t hash = STRHSH_NULL;
593
594 while (*s)
595 hash = (hash ^ *s++) * 16777619U;
596
597 return hash ^ (hash >> 16);
598}
599
600static inline uint32_t
601memhsh (const char *s, size_t len)
602{
603 uint32_t hash = STRHSH_NULL;
604
605 while (len--)
606 hash = (hash ^ *s++) * 16777619U;
607
608 return hash;
609}
161 610
162struct str_hash 611struct str_hash
163{ 612{
164 std::size_t operator ()(const char *s) const 613 std::size_t operator ()(const char *s) const
165 { 614 {
166 unsigned long hash = 0;
167
168 /* use the one-at-a-time hash function, which supposedly is
169 * better than the djb2-like one used by perl5.005, but
170 * certainly is better then the bug used here before.
171 * see http://burtleburtle.net/bob/hash/doobs.html
172 */
173 while (*s)
174 {
175 hash += *s++;
176 hash += hash << 10;
177 hash ^= hash >> 6;
178 }
179
180 hash += hash << 3;
181 hash ^= hash >> 11;
182 hash += hash << 15;
183
184 return hash; 615 return strhsh (s);
616 }
617
618 std::size_t operator ()(const shstr &s) const
619 {
620 return strhsh (s);
185 } 621 }
186}; 622};
187 623
188struct str_equal 624struct str_equal
189{ 625{
191 { 627 {
192 return !strcmp (a, b); 628 return !strcmp (a, b);
193 } 629 }
194}; 630};
195 631
196#include <vector> 632// Mostly the same as std::vector, but insert/erase can reorder
197 633// the elements, making append(=insert)/remove O(1) instead of O(n).
634//
635// NOTE: only some forms of erase are available
198template<class obj> 636template<class T>
199struct unordered_vector : std::vector<obj, slice_allocator<obj> > 637struct unordered_vector : std::vector<T, slice_allocator<T> >
200{ 638{
201 typedef typename unordered_vector::iterator iterator; 639 typedef typename unordered_vector::iterator iterator;
202 640
203 void erase (unsigned int pos) 641 void erase (unsigned int pos)
204 { 642 {
212 { 650 {
213 erase ((unsigned int )(i - this->begin ())); 651 erase ((unsigned int )(i - this->begin ()));
214 } 652 }
215}; 653};
216 654
217template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 655// This container blends advantages of linked lists
218template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 656// (efficiency) with vectors (random access) by
219template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 657// using an unordered vector and storing the vector
658// index inside the object.
659//
660// + memory-efficient on most 64 bit archs
661// + O(1) insert/remove
662// + free unique (but varying) id for inserted objects
663// + cache-friendly iteration
664// - only works for pointers to structs
665//
666// NOTE: only some forms of erase/insert are available
667typedef int object_vector_index;
220 668
221template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 669template<class T, object_vector_index T::*indexmember>
670struct object_vector : std::vector<T *, slice_allocator<T *> >
671{
672 typedef typename object_vector::iterator iterator;
673
674 bool contains (const T *obj) const
675 {
676 return obj->*indexmember;
677 }
678
679 iterator find (const T *obj)
680 {
681 return obj->*indexmember
682 ? this->begin () + obj->*indexmember - 1
683 : this->end ();
684 }
685
686 void push_back (T *obj)
687 {
688 std::vector<T *, slice_allocator<T *> >::push_back (obj);
689 obj->*indexmember = this->size ();
690 }
691
692 void insert (T *obj)
693 {
694 push_back (obj);
695 }
696
697 void insert (T &obj)
698 {
699 insert (&obj);
700 }
701
702 void erase (T *obj)
703 {
704 object_vector_index pos = obj->*indexmember;
705 obj->*indexmember = 0;
706
707 if (pos < this->size ())
708 {
709 (*this)[pos - 1] = (*this)[this->size () - 1];
710 (*this)[pos - 1]->*indexmember = pos;
711 }
712
713 this->pop_back ();
714 }
715
716 void erase (T &obj)
717 {
718 erase (&obj);
719 }
720};
721
722/////////////////////////////////////////////////////////////////////////////
723
724// something like a vector or stack, but without
725// out of bounds checking
726template<typename T>
727struct fixed_stack
728{
729 T *data;
730 int size;
731 int max;
732
733 fixed_stack ()
734 : size (0), data (0)
735 {
736 }
737
738 fixed_stack (int max)
739 : size (0), max (max)
740 {
741 data = salloc<T> (max);
742 }
743
744 void reset (int new_max)
745 {
746 sfree (data, max);
747 size = 0;
748 max = new_max;
749 data = salloc<T> (max);
750 }
751
752 void free ()
753 {
754 sfree (data, max);
755 data = 0;
756 }
757
758 ~fixed_stack ()
759 {
760 sfree (data, max);
761 }
762
763 T &operator[](int idx)
764 {
765 return data [idx];
766 }
767
768 void push (T v)
769 {
770 data [size++] = v;
771 }
772
773 T &pop ()
774 {
775 return data [--size];
776 }
777
778 T remove (int idx)
779 {
780 T v = data [idx];
781
782 data [idx] = data [--size];
783
784 return v;
785 }
786};
787
788/////////////////////////////////////////////////////////////////////////////
222 789
223// basically does what strncpy should do, but appends "..." to strings exceeding length 790// basically does what strncpy should do, but appends "..." to strings exceeding length
791// returns the number of bytes actually used (including \0)
224void assign (char *dst, const char *src, int maxlen); 792int assign (char *dst, const char *src, int maxsize);
225 793
226// type-safe version of assign 794// type-safe version of assign
227template<int N> 795template<int N>
228inline void assign (char (&dst)[N], const char *src) 796inline int assign (char (&dst)[N], const char *src)
229{ 797{
230 assign ((char *)&dst, src, N); 798 return assign ((char *)&dst, src, N);
231} 799}
232 800
233typedef double tstamp; 801typedef double tstamp;
234 802
235// return current time as timestampe 803// return current time as timestamp
236tstamp now (); 804tstamp now ();
237 805
806int similar_direction (int a, int b);
807
808// like v?sprintf, but returns a "static" buffer
809char *vformat (const char *format, va_list ap);
810char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
811
812// safety-check player input which will become object->msg
813bool msg_is_safe (const char *msg);
814
815/////////////////////////////////////////////////////////////////////////////
816// threads, very very thin wrappers around pthreads
817
818struct thread
819{
820 pthread_t id;
821
822 void start (void *(*start_routine)(void *), void *arg = 0);
823
824 void cancel ()
825 {
826 pthread_cancel (id);
827 }
828
829 void *join ()
830 {
831 void *ret;
832
833 if (pthread_join (id, &ret))
834 cleanup ("pthread_join failed", 1);
835
836 return ret;
837 }
838};
839
840// note that mutexes are not classes
841typedef pthread_mutex_t smutex;
842
843#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
844 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
845#else
846 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
238#endif 847#endif
239 848
849#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
850#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
851#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
852
853typedef pthread_cond_t scond;
854
855#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
856#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
857#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
858#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
859
860#endif
861

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines