ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.26 by root, Sun Jan 7 02:39:14 2007 UTC vs.
Revision 1.112 by root, Tue Jul 6 20:15:13 2010 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4#if __GNUC__ >= 3 26#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 27
6#else 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) 0 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#endif 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32#include <pthread.h>
9 33
10#include <cstddef> 34#include <cstddef>
35#include <cmath>
11#include <new> 36#include <new>
12#include <vector> 37#include <vector>
13 38
14#include <glib.h> 39#include <glib.h>
15 40
16#include <shstr.h> 41#include <shstr.h>
17#include <traits.h> 42#include <traits.h>
18 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
19// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
20#define AUTODECL(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
21 59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
22// very ugly macro that basicaly declares and initialises a variable 71// very ugly macro that basically declares and initialises a variable
23// that is in scope for the next statement only 72// that is in scope for the next statement only
24// works only for stuff that can be assigned 0 and converts to false 73// works only for stuff that can be assigned 0 and converts to false
25// (note: works great for pointers) 74// (note: works great for pointers)
26// most ugly macro I ever wrote 75// most ugly macro I ever wrote
27#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
77
78// in range including end
79#define IN_RANGE_INC(val,beg,end) \
80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
81
82// in range excluding end
83#define IN_RANGE_EXC(val,beg,end) \
84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85
86void cleanup (const char *cause, bool make_core = false);
87void fork_abort (const char *msg);
88
89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
90// as a is often a constant while b is the variable. it is still a bug, though.
91template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
92template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119template<typename T, typename U>
120static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
121
122// div* only work correctly for div > 0
123// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124template<typename T> static inline T div (T val, T div)
125{
126 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
127}
128
129template<> inline float div (float val, float div) { return val / div; }
130template<> inline double div (double val, double div) { return val / div; }
131
132// div, round-up
133template<typename T> static inline T div_ru (T val, T div)
134{
135 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
136}
137// div, round-down
138template<typename T> static inline T div_rd (T val, T div)
139{
140 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
141}
142
143// lerp* only work correctly for min_in < max_in
144// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
145template<typename T>
146static inline T
147lerp (T val, T min_in, T max_in, T min_out, T max_out)
148{
149 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
150}
151
152// lerp, round-down
153template<typename T>
154static inline T
155lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
156{
157 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
158}
159
160// lerp, round-up
161template<typename T>
162static inline T
163lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
164{
165 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
166}
167
168// lots of stuff taken from FXT
169
170/* Rotate right. This is used in various places for checksumming */
171//TODO: that sucks, use a better checksum algo
172static inline uint32_t
173rotate_right (uint32_t c, uint32_t count = 1)
174{
175 return (c << (32 - count)) | (c >> count);
176}
177
178static inline uint32_t
179rotate_left (uint32_t c, uint32_t count = 1)
180{
181 return (c >> (32 - count)) | (c << count);
182}
183
184// Return abs(a-b)
185// Both a and b must not have the most significant bit set
186static inline uint32_t
187upos_abs_diff (uint32_t a, uint32_t b)
188{
189 long d1 = b - a;
190 long d2 = (d1 & (d1 >> 31)) << 1;
191
192 return d1 - d2; // == (b - d) - (a + d);
193}
194
195// Both a and b must not have the most significant bit set
196static inline uint32_t
197upos_min (uint32_t a, uint32_t b)
198{
199 int32_t d = b - a;
200 d &= d >> 31;
201 return a + d;
202}
203
204// Both a and b must not have the most significant bit set
205static inline uint32_t
206upos_max (uint32_t a, uint32_t b)
207{
208 int32_t d = b - a;
209 d &= d >> 31;
210 return b - d;
211}
212
213// this is much faster than crossfire's original algorithm
214// on modern cpus
215inline int
216isqrt (int n)
217{
218 return (int)sqrtf ((float)n);
219}
220
221// this is kind of like the ^^ operator, if it would exist, without sequence point.
222// more handy than it looks like, due to the implicit !! done on its arguments
223inline bool
224logical_xor (bool a, bool b)
225{
226 return a != b;
227}
228
229inline bool
230logical_implies (bool a, bool b)
231{
232 return a <= b;
233}
234
235// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
236#if 0
237// and has a max. error of 6 in the range -100..+100.
238#else
239// and has a max. error of 9 in the range -100..+100.
240#endif
241inline int
242idistance (int dx, int dy)
243{
244 unsigned int dx_ = abs (dx);
245 unsigned int dy_ = abs (dy);
246
247#if 0
248 return dx_ > dy_
249 ? (dx_ * 61685 + dy_ * 26870) >> 16
250 : (dy_ * 61685 + dx_ * 26870) >> 16;
251#else
252 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
253#endif
254}
255
256/*
257 * absdir(int): Returns a number between 1 and 8, which represent
258 * the "absolute" direction of a number (it actually takes care of
259 * "overflow" in previous calculations of a direction).
260 */
261inline int
262absdir (int d)
263{
264 return ((d - 1) & 7) + 1;
265}
266
267// avoid ctz name because netbsd or freebsd spams it's namespace with it
268#if GCC_VERSION(3,4)
269static inline int least_significant_bit (uint32_t x)
270{
271 return __builtin_ctz (x);
272}
273#else
274int least_significant_bit (uint32_t x);
275#endif
276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
281extern ssize_t slice_alloc; // statistics
282
283void *salloc_ (int n) throw (std::bad_alloc);
284void *salloc_ (int n, void *src) throw (std::bad_alloc);
285
286// strictly the same as g_slice_alloc, but never returns 0
287template<typename T>
288inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
289
290// also copies src into the new area, like "memdup"
291// if src is 0, clears the memory
292template<typename T>
293inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294
295// clears the memory
296template<typename T>
297inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
298
299// for symmetry
300template<typename T>
301inline void sfree (T *ptr, int n = 1) throw ()
302{
303 if (expect_true (ptr))
304 {
305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 assert (slice_alloc >= 0);//D
309 }
310}
311
312// nulls the pointer
313template<typename T>
314inline void sfree0 (T *&ptr, int n = 1) throw ()
315{
316 sfree<T> (ptr, n);
317 ptr = 0;
318}
28 319
29// makes dynamically allocated objects zero-initialised 320// makes dynamically allocated objects zero-initialised
30struct zero_initialised 321struct zero_initialised
31{ 322{
32 void *operator new (size_t s, void *p) 323 void *operator new (size_t s, void *p)
35 return p; 326 return p;
36 } 327 }
37 328
38 void *operator new (size_t s) 329 void *operator new (size_t s)
39 { 330 {
40 return g_slice_alloc0 (s); 331 return salloc0<char> (s);
41 } 332 }
42 333
43 void *operator new[] (size_t s) 334 void *operator new[] (size_t s)
44 { 335 {
45 return g_slice_alloc0 (s); 336 return salloc0<char> (s);
46 } 337 }
47 338
48 void operator delete (void *p, size_t s) 339 void operator delete (void *p, size_t s)
49 { 340 {
50 g_slice_free1 (s, p); 341 sfree ((char *)p, s);
51 } 342 }
52 343
53 void operator delete[] (void *p, size_t s) 344 void operator delete[] (void *p, size_t s)
54 { 345 {
55 g_slice_free1 (s, p); 346 sfree ((char *)p, s);
56 } 347 }
57}; 348};
58 349
59void *salloc_ (int n) throw (std::bad_alloc); 350// makes dynamically allocated objects zero-initialised
60void *salloc_ (int n, void *src) throw (std::bad_alloc); 351struct slice_allocated
61
62// strictly the same as g_slice_alloc, but never returns 0
63template<typename T>
64inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
65
66// also copies src into the new area, like "memdup"
67// if src is 0, clears the memory
68template<typename T>
69inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
70
71// clears the memory
72template<typename T>
73inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
74
75// for symmetry
76template<typename T>
77inline void sfree (T *ptr, int n = 1) throw ()
78{ 352{
79 g_slice_free1 (n * sizeof (T), (void *)ptr); 353 void *operator new (size_t s, void *p)
80} 354 {
355 return p;
356 }
357
358 void *operator new (size_t s)
359 {
360 return salloc<char> (s);
361 }
362
363 void *operator new[] (size_t s)
364 {
365 return salloc<char> (s);
366 }
367
368 void operator delete (void *p, size_t s)
369 {
370 sfree ((char *)p, s);
371 }
372
373 void operator delete[] (void *p, size_t s)
374 {
375 sfree ((char *)p, s);
376 }
377};
81 378
82// a STL-compatible allocator that uses g_slice 379// a STL-compatible allocator that uses g_slice
83// boy, this is verbose 380// boy, this is verbose
84template<typename Tp> 381template<typename Tp>
85struct slice_allocator 382struct slice_allocator
97 { 394 {
98 typedef slice_allocator<U> other; 395 typedef slice_allocator<U> other;
99 }; 396 };
100 397
101 slice_allocator () throw () { } 398 slice_allocator () throw () { }
102 slice_allocator (const slice_allocator &o) throw () { } 399 slice_allocator (const slice_allocator &) throw () { }
103 template<typename Tp2> 400 template<typename Tp2>
104 slice_allocator (const slice_allocator<Tp2> &) throw () { } 401 slice_allocator (const slice_allocator<Tp2> &) throw () { }
105 402
106 ~slice_allocator () { } 403 ~slice_allocator () { }
107 404
116 void deallocate (pointer p, size_type n) 413 void deallocate (pointer p, size_type n)
117 { 414 {
118 sfree<Tp> (p, n); 415 sfree<Tp> (p, n);
119 } 416 }
120 417
121 size_type max_size ()const throw () 418 size_type max_size () const throw ()
122 { 419 {
123 return size_t (-1) / sizeof (Tp); 420 return size_t (-1) / sizeof (Tp);
124 } 421 }
125 422
126 void construct (pointer p, const Tp &val) 423 void construct (pointer p, const Tp &val)
131 void destroy (pointer p) 428 void destroy (pointer p)
132 { 429 {
133 p->~Tp (); 430 p->~Tp ();
134 } 431 }
135}; 432};
433
434INTERFACE_CLASS (attachable)
435struct refcnt_base
436{
437 typedef int refcnt_t;
438 mutable refcnt_t ACC (RW, refcnt);
439
440 MTH void refcnt_inc () const { ++refcnt; }
441 MTH void refcnt_dec () const { --refcnt; }
442
443 refcnt_base () : refcnt (0) { }
444};
445
446// to avoid branches with more advanced compilers
447extern refcnt_base::refcnt_t refcnt_dummy;
136 448
137template<class T> 449template<class T>
138struct refptr 450struct refptr
139{ 451{
452 // p if not null
453 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
454
455 void refcnt_dec ()
456 {
457 if (!is_constant (p))
458 --*refcnt_ref ();
459 else if (p)
460 --p->refcnt;
461 }
462
463 void refcnt_inc ()
464 {
465 if (!is_constant (p))
466 ++*refcnt_ref ();
467 else if (p)
468 ++p->refcnt;
469 }
470
140 T *p; 471 T *p;
141 472
142 refptr () : p(0) { } 473 refptr () : p(0) { }
143 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 474 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
144 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 475 refptr (T *p) : p(p) { refcnt_inc (); }
145 ~refptr () { if (p) p->refcnt_dec (); } 476 ~refptr () { refcnt_dec (); }
146 477
147 const refptr<T> &operator =(T *o) 478 const refptr<T> &operator =(T *o)
148 { 479 {
480 // if decrementing ever destroys we need to reverse the order here
149 if (p) p->refcnt_dec (); 481 refcnt_dec ();
150 p = o; 482 p = o;
151 if (p) p->refcnt_inc (); 483 refcnt_inc ();
152
153 return *this; 484 return *this;
154 } 485 }
155 486
156 const refptr<T> &operator =(const refptr<T> o) 487 const refptr<T> &operator =(const refptr<T> &o)
157 { 488 {
158 *this = o.p; 489 *this = o.p;
159 return *this; 490 return *this;
160 } 491 }
161 492
162 T &operator * () const { return *p; } 493 T &operator * () const { return *p; }
163 T *operator ->() const { return p; } 494 T *operator ->() const { return p; }
164 495
165 operator T *() const { return p; } 496 operator T *() const { return p; }
166}; 497};
167 498
168typedef refptr<maptile> maptile_ptr; 499typedef refptr<maptile> maptile_ptr;
169typedef refptr<object> object_ptr; 500typedef refptr<object> object_ptr;
170typedef refptr<archetype> arch_ptr; 501typedef refptr<archetype> arch_ptr;
171typedef refptr<client> client_ptr; 502typedef refptr<client> client_ptr;
172typedef refptr<player> player_ptr; 503typedef refptr<player> player_ptr;
504typedef refptr<region> region_ptr;
505
506#define STRHSH_NULL 2166136261
507
508static inline uint32_t
509strhsh (const char *s)
510{
511 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
512 // it is about twice as fast as the one-at-a-time one,
513 // with good distribution.
514 // FNV-1a is faster on many cpus because the multiplication
515 // runs concurrently with the looping logic.
516 // we modify the hash a bit to improve its distribution
517 uint32_t hash = STRHSH_NULL;
518
519 while (*s)
520 hash = (hash ^ *s++) * 16777619U;
521
522 return hash ^ (hash >> 16);
523}
524
525static inline uint32_t
526memhsh (const char *s, size_t len)
527{
528 uint32_t hash = STRHSH_NULL;
529
530 while (len--)
531 hash = (hash ^ *s++) * 16777619U;
532
533 return hash;
534}
173 535
174struct str_hash 536struct str_hash
175{ 537{
176 std::size_t operator ()(const char *s) const 538 std::size_t operator ()(const char *s) const
177 { 539 {
178 unsigned long hash = 0;
179
180 /* use the one-at-a-time hash function, which supposedly is
181 * better than the djb2-like one used by perl5.005, but
182 * certainly is better then the bug used here before.
183 * see http://burtleburtle.net/bob/hash/doobs.html
184 */
185 while (*s)
186 {
187 hash += *s++;
188 hash += hash << 10;
189 hash ^= hash >> 6;
190 }
191
192 hash += hash << 3;
193 hash ^= hash >> 11;
194 hash += hash << 15;
195
196 return hash; 540 return strhsh (s);
541 }
542
543 std::size_t operator ()(const shstr &s) const
544 {
545 return strhsh (s);
197 } 546 }
198}; 547};
199 548
200struct str_equal 549struct str_equal
201{ 550{
203 { 552 {
204 return !strcmp (a, b); 553 return !strcmp (a, b);
205 } 554 }
206}; 555};
207 556
557// Mostly the same as std::vector, but insert/erase can reorder
558// the elements, making append(=insert)/remove O(1) instead of O(n).
559//
560// NOTE: only some forms of erase are available
208template<class T> 561template<class T>
209struct unordered_vector : std::vector<T, slice_allocator<T> > 562struct unordered_vector : std::vector<T, slice_allocator<T> >
210{ 563{
211 typedef typename unordered_vector::iterator iterator; 564 typedef typename unordered_vector::iterator iterator;
212 565
222 { 575 {
223 erase ((unsigned int )(i - this->begin ())); 576 erase ((unsigned int )(i - this->begin ()));
224 } 577 }
225}; 578};
226 579
227template<class T, int T::* index> 580// This container blends advantages of linked lists
581// (efficiency) with vectors (random access) by
582// by using an unordered vector and storing the vector
583// index inside the object.
584//
585// + memory-efficient on most 64 bit archs
586// + O(1) insert/remove
587// + free unique (but varying) id for inserted objects
588// + cache-friendly iteration
589// - only works for pointers to structs
590//
591// NOTE: only some forms of erase/insert are available
592typedef int object_vector_index;
593
594template<class T, object_vector_index T::*indexmember>
228struct object_vector : std::vector<T *, slice_allocator<T *> > 595struct object_vector : std::vector<T *, slice_allocator<T *> >
229{ 596{
597 typedef typename object_vector::iterator iterator;
598
599 bool contains (const T *obj) const
600 {
601 return obj->*indexmember;
602 }
603
604 iterator find (const T *obj)
605 {
606 return obj->*indexmember
607 ? this->begin () + obj->*indexmember - 1
608 : this->end ();
609 }
610
611 void push_back (T *obj)
612 {
613 std::vector<T *, slice_allocator<T *> >::push_back (obj);
614 obj->*indexmember = this->size ();
615 }
616
230 void insert (T *obj) 617 void insert (T *obj)
231 { 618 {
232 assert (!(obj->*index));
233 push_back (obj); 619 push_back (obj);
234 obj->*index = this->size ();
235 } 620 }
236 621
237 void insert (T &obj) 622 void insert (T &obj)
238 { 623 {
239 insert (&obj); 624 insert (&obj);
240 } 625 }
241 626
242 void erase (T *obj) 627 void erase (T *obj)
243 { 628 {
244 assert (obj->*index);
245 int pos = obj->*index; 629 unsigned int pos = obj->*indexmember;
246 obj->*index = 0; 630 obj->*indexmember = 0;
247 631
248 if (pos < this->size ()) 632 if (pos < this->size ())
249 { 633 {
250 (*this)[pos - 1] = (*this)[this->size () - 1]; 634 (*this)[pos - 1] = (*this)[this->size () - 1];
251 (*this)[pos - 1]->*index = pos; 635 (*this)[pos - 1]->*indexmember = pos;
252 } 636 }
253 637
254 this->pop_back (); 638 this->pop_back ();
255 } 639 }
256 640
257 void erase (T &obj) 641 void erase (T &obj)
258 { 642 {
259 errase (&obj); 643 erase (&obj);
260 } 644 }
261}; 645};
262 646
263template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 647/////////////////////////////////////////////////////////////////////////////
264template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
265template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; }
266 648
267template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 649// something like a vector or stack, but without
650// out of bounds checking
651template<typename T>
652struct fixed_stack
653{
654 T *data;
655 int size;
656 int max;
657
658 fixed_stack ()
659 : size (0), data (0)
660 {
661 }
662
663 fixed_stack (int max)
664 : size (0), max (max)
665 {
666 data = salloc<T> (max);
667 }
668
669 void reset (int new_max)
670 {
671 sfree (data, max);
672 size = 0;
673 max = new_max;
674 data = salloc<T> (max);
675 }
676
677 void free ()
678 {
679 sfree (data, max);
680 data = 0;
681 }
682
683 ~fixed_stack ()
684 {
685 sfree (data, max);
686 }
687
688 T &operator[](int idx)
689 {
690 return data [idx];
691 }
692
693 void push (T v)
694 {
695 data [size++] = v;
696 }
697
698 T &pop ()
699 {
700 return data [--size];
701 }
702
703 T remove (int idx)
704 {
705 T v = data [idx];
706
707 data [idx] = data [--size];
708
709 return v;
710 }
711};
712
713/////////////////////////////////////////////////////////////////////////////
268 714
269// basically does what strncpy should do, but appends "..." to strings exceeding length 715// basically does what strncpy should do, but appends "..." to strings exceeding length
716// returns the number of bytes actually used (including \0)
270void assign (char *dst, const char *src, int maxlen); 717int assign (char *dst, const char *src, int maxsize);
271 718
272// type-safe version of assign 719// type-safe version of assign
273template<int N> 720template<int N>
274inline void assign (char (&dst)[N], const char *src) 721inline int assign (char (&dst)[N], const char *src)
275{ 722{
276 assign ((char *)&dst, src, N); 723 return assign ((char *)&dst, src, N);
277} 724}
278 725
279typedef double tstamp; 726typedef double tstamp;
280 727
281// return current time as timestampe 728// return current time as timestamp
282tstamp now (); 729tstamp now ();
283 730
284int similar_direction (int a, int b); 731int similar_direction (int a, int b);
285 732
733// like v?sprintf, but returns a "static" buffer
734char *vformat (const char *format, va_list ap);
735char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
736
737// safety-check player input which will become object->msg
738bool msg_is_safe (const char *msg);
739
740/////////////////////////////////////////////////////////////////////////////
741// threads, very very thin wrappers around pthreads
742
743struct thread
744{
745 pthread_t id;
746
747 void start (void *(*start_routine)(void *), void *arg = 0);
748
749 void cancel ()
750 {
751 pthread_cancel (id);
752 }
753
754 void *join ()
755 {
756 void *ret;
757
758 if (pthread_join (id, &ret))
759 cleanup ("pthread_join failed", 1);
760
761 return ret;
762 }
763};
764
765// note that mutexes are not classes
766typedef pthread_mutex_t smutex;
767
768#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
769 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
770#else
771 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
286#endif 772#endif
287 773
774#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
775#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
776#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
777
778typedef pthread_cond_t scond;
779
780#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
781#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
782#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
783#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
784
785#endif
786

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines