ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.30 by root, Mon Jan 15 01:50:33 2007 UTC vs.
Revision 1.103 by root, Thu Apr 29 15:49:04 2010 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4#if __GNUC__ >= 3 26#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 27
6#else 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) 0 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#endif 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32#include <pthread.h>
9 33
10#include <cstddef> 34#include <cstddef>
11#include <cmath> 35#include <cmath>
12#include <new> 36#include <new>
13#include <vector> 37#include <vector>
15#include <glib.h> 39#include <glib.h>
16 40
17#include <shstr.h> 41#include <shstr.h>
18#include <traits.h> 42#include <traits.h>
19 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
20// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
21#define AUTODECL(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
22 59
60// could use the sizeof (arr) /( sizeof (arr [0]) here, but C++ is
61// much more obfuscated... :)
62
63template<typename T, int N>
64inline int array_length (const T (&arr)[N])
65{
66 return N;
67}
68
23// very ugly macro that basicaly declares and initialises a variable 69// very ugly macro that basically declares and initialises a variable
24// that is in scope for the next statement only 70// that is in scope for the next statement only
25// works only for stuff that can be assigned 0 and converts to false 71// works only for stuff that can be assigned 0 and converts to false
26// (note: works great for pointers) 72// (note: works great for pointers)
27// most ugly macro I ever wrote 73// most ugly macro I ever wrote
28#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 74#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
29 75
30// in range including end 76// in range including end
31#define IN_RANGE_INC(val,beg,end) \ 77#define IN_RANGE_INC(val,beg,end) \
32 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 78 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
33 79
34// in range excluding end 80// in range excluding end
35#define IN_RANGE_EXC(val,beg,end) \ 81#define IN_RANGE_EXC(val,beg,end) \
36 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 82 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
37 83
84void cleanup (const char *cause, bool make_core = false);
85void fork_abort (const char *msg);
86
87// rationale for using (U) not (T) is to reduce signed/unsigned issues,
88// as a is often a constant while b is the variable. it is still a bug, though.
89template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
90template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
91template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
92
93template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
94template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
95template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
96
97template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
98
99template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
100template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
101
102// sign returns -1 or +1
103template<typename T>
104static inline T sign (T v) { return v < 0 ? -1 : +1; }
105// relies on 2c representation
106template<>
107inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
108template<>
109inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
110template<>
111inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
112
113// sign0 returns -1, 0 or +1
114template<typename T>
115static inline T sign0 (T v) { return v ? sign (v) : 0; }
116
117template<typename T, typename U>
118static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
119
120// div* only work correctly for div > 0
121// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122template<typename T> static inline T div (T val, T div)
123{
124 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
125}
126// div, round-up
127template<typename T> static inline T div_ru (T val, T div)
128{
129 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
130}
131// div, round-down
132template<typename T> static inline T div_rd (T val, T div)
133{
134 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
135}
136
137// lerp* only work correctly for min_in < max_in
138// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
139template<typename T>
140static inline T
141lerp (T val, T min_in, T max_in, T min_out, T max_out)
142{
143 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
144}
145
146// lerp, round-down
147template<typename T>
148static inline T
149lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
150{
151 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
152}
153
154// lerp, round-up
155template<typename T>
156static inline T
157lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
158{
159 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
160}
161
162// lots of stuff taken from FXT
163
164/* Rotate right. This is used in various places for checksumming */
165//TODO: that sucks, use a better checksum algo
166static inline uint32_t
167rotate_right (uint32_t c, uint32_t count = 1)
168{
169 return (c << (32 - count)) | (c >> count);
170}
171
172static inline uint32_t
173rotate_left (uint32_t c, uint32_t count = 1)
174{
175 return (c >> (32 - count)) | (c << count);
176}
177
178// Return abs(a-b)
179// Both a and b must not have the most significant bit set
180static inline uint32_t
181upos_abs_diff (uint32_t a, uint32_t b)
182{
183 long d1 = b - a;
184 long d2 = (d1 & (d1 >> 31)) << 1;
185
186 return d1 - d2; // == (b - d) - (a + d);
187}
188
189// Both a and b must not have the most significant bit set
190static inline uint32_t
191upos_min (uint32_t a, uint32_t b)
192{
193 int32_t d = b - a;
194 d &= d >> 31;
195 return a + d;
196}
197
198// Both a and b must not have the most significant bit set
199static inline uint32_t
200upos_max (uint32_t a, uint32_t b)
201{
202 int32_t d = b - a;
203 d &= d >> 31;
204 return b - d;
205}
206
38// this is much faster than crossfires original algorithm 207// this is much faster than crossfire's original algorithm
39// on modern cpus 208// on modern cpus
40inline int 209inline int
41isqrt (int n) 210isqrt (int n)
42{ 211{
43 return (int)sqrtf ((float)n); 212 return (int)sqrtf ((float)n);
213}
214
215// this is kind of like the ^^ operator, if it would exist, without sequence point.
216// more handy than it looks like, due to the implicit !! done on its arguments
217inline bool
218logical_xor (bool a, bool b)
219{
220 return a != b;
221}
222
223inline bool
224logical_implies (bool a, bool b)
225{
226 return a <= b;
44} 227}
45 228
46// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 229// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
47#if 0 230#if 0
48// and has a max. error of 6 in the range -100..+100. 231// and has a max. error of 6 in the range -100..+100.
73absdir (int d) 256absdir (int d)
74{ 257{
75 return ((d - 1) & 7) + 1; 258 return ((d - 1) & 7) + 1;
76} 259}
77 260
261// avoid ctz name because netbsd or freebsd spams it's namespace with it
262#if GCC_VERSION(3,4)
263static inline int least_significant_bit (uint32_t x)
264{
265 return __builtin_ctz (x);
266}
267#else
268int least_significant_bit (uint32_t x);
269#endif
270
271#define for_all_bits_sparse_32(mask, idxvar) \
272 for (uint32_t idxvar, mask_ = mask; \
273 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
274
275extern ssize_t slice_alloc; // statistics
276
277void *salloc_ (int n) throw (std::bad_alloc);
278void *salloc_ (int n, void *src) throw (std::bad_alloc);
279
280// strictly the same as g_slice_alloc, but never returns 0
281template<typename T>
282inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
283
284// also copies src into the new area, like "memdup"
285// if src is 0, clears the memory
286template<typename T>
287inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
288
289// clears the memory
290template<typename T>
291inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
292
293// for symmetry
294template<typename T>
295inline void sfree (T *ptr, int n = 1) throw ()
296{
297 if (expect_true (ptr))
298 {
299 slice_alloc -= n * sizeof (T);
300 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
301 g_slice_free1 (n * sizeof (T), (void *)ptr);
302 assert (slice_alloc >= 0);//D
303 }
304}
305
306// nulls the pointer
307template<typename T>
308inline void sfree0 (T *&ptr, int n = 1) throw ()
309{
310 sfree<T> (ptr, n);
311 ptr = 0;
312}
313
78// makes dynamically allocated objects zero-initialised 314// makes dynamically allocated objects zero-initialised
79struct zero_initialised 315struct zero_initialised
80{ 316{
81 void *operator new (size_t s, void *p) 317 void *operator new (size_t s, void *p)
82 { 318 {
84 return p; 320 return p;
85 } 321 }
86 322
87 void *operator new (size_t s) 323 void *operator new (size_t s)
88 { 324 {
89 return g_slice_alloc0 (s); 325 return salloc0<char> (s);
90 } 326 }
91 327
92 void *operator new[] (size_t s) 328 void *operator new[] (size_t s)
93 { 329 {
94 return g_slice_alloc0 (s); 330 return salloc0<char> (s);
95 } 331 }
96 332
97 void operator delete (void *p, size_t s) 333 void operator delete (void *p, size_t s)
98 { 334 {
99 g_slice_free1 (s, p); 335 sfree ((char *)p, s);
100 } 336 }
101 337
102 void operator delete[] (void *p, size_t s) 338 void operator delete[] (void *p, size_t s)
103 { 339 {
104 g_slice_free1 (s, p); 340 sfree ((char *)p, s);
105 } 341 }
106}; 342};
107 343
108void *salloc_ (int n) throw (std::bad_alloc); 344// makes dynamically allocated objects zero-initialised
109void *salloc_ (int n, void *src) throw (std::bad_alloc); 345struct slice_allocated
110
111// strictly the same as g_slice_alloc, but never returns 0
112template<typename T>
113inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
114
115// also copies src into the new area, like "memdup"
116// if src is 0, clears the memory
117template<typename T>
118inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
119
120// clears the memory
121template<typename T>
122inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
123
124// for symmetry
125template<typename T>
126inline void sfree (T *ptr, int n = 1) throw ()
127{ 346{
128 g_slice_free1 (n * sizeof (T), (void *)ptr); 347 void *operator new (size_t s, void *p)
129} 348 {
349 return p;
350 }
351
352 void *operator new (size_t s)
353 {
354 return salloc<char> (s);
355 }
356
357 void *operator new[] (size_t s)
358 {
359 return salloc<char> (s);
360 }
361
362 void operator delete (void *p, size_t s)
363 {
364 sfree ((char *)p, s);
365 }
366
367 void operator delete[] (void *p, size_t s)
368 {
369 sfree ((char *)p, s);
370 }
371};
130 372
131// a STL-compatible allocator that uses g_slice 373// a STL-compatible allocator that uses g_slice
132// boy, this is verbose 374// boy, this is verbose
133template<typename Tp> 375template<typename Tp>
134struct slice_allocator 376struct slice_allocator
146 { 388 {
147 typedef slice_allocator<U> other; 389 typedef slice_allocator<U> other;
148 }; 390 };
149 391
150 slice_allocator () throw () { } 392 slice_allocator () throw () { }
151 slice_allocator (const slice_allocator &o) throw () { } 393 slice_allocator (const slice_allocator &) throw () { }
152 template<typename Tp2> 394 template<typename Tp2>
153 slice_allocator (const slice_allocator<Tp2> &) throw () { } 395 slice_allocator (const slice_allocator<Tp2> &) throw () { }
154 396
155 ~slice_allocator () { } 397 ~slice_allocator () { }
156 398
165 void deallocate (pointer p, size_type n) 407 void deallocate (pointer p, size_type n)
166 { 408 {
167 sfree<Tp> (p, n); 409 sfree<Tp> (p, n);
168 } 410 }
169 411
170 size_type max_size ()const throw () 412 size_type max_size () const throw ()
171 { 413 {
172 return size_t (-1) / sizeof (Tp); 414 return size_t (-1) / sizeof (Tp);
173 } 415 }
174 416
175 void construct (pointer p, const Tp &val) 417 void construct (pointer p, const Tp &val)
180 void destroy (pointer p) 422 void destroy (pointer p)
181 { 423 {
182 p->~Tp (); 424 p->~Tp ();
183 } 425 }
184}; 426};
427
428// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
429// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
430// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
431struct tausworthe_random_generator
432{
433 uint32_t state [4];
434
435 void operator =(const tausworthe_random_generator &src)
436 {
437 state [0] = src.state [0];
438 state [1] = src.state [1];
439 state [2] = src.state [2];
440 state [3] = src.state [3];
441 }
442
443 void seed (uint32_t seed);
444 uint32_t next ();
445};
446
447// Xorshift RNGs, George Marsaglia
448// http://www.jstatsoft.org/v08/i14/paper
449// this one is about 40% faster than the tausworthe one above (i.e. not much),
450// despite the inlining, and has the issue of only creating 2**32-1 numbers.
451// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
452struct xorshift_random_generator
453{
454 uint32_t x, y;
455
456 void operator =(const xorshift_random_generator &src)
457 {
458 x = src.x;
459 y = src.y;
460 }
461
462 void seed (uint32_t seed)
463 {
464 x = seed;
465 y = seed * 69069U;
466 }
467
468 uint32_t next ()
469 {
470 uint32_t t = x ^ (x << 10);
471 x = y;
472 y = y ^ (y >> 13) ^ t ^ (t >> 10);
473 return y;
474 }
475};
476
477template<class generator>
478struct random_number_generator : generator
479{
480 // uniform distribution, 0 .. max (0, num - 1)
481 uint32_t operator ()(uint32_t num)
482 {
483 return !is_constant (num) ? get_range (num) // non-constant
484 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
485 : this->next () & (num - 1); // constant, power-of-two
486 }
487
488 // return a number within the closed interval [min .. max]
489 int operator () (int r_min, int r_max)
490 {
491 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
492 ? r_min + operator ()(r_max - r_min + 1)
493 : get_range (r_min, r_max);
494 }
495
496 // return a number within the closed interval [0..1]
497 double operator ()()
498 {
499 return this->next () / (double)0xFFFFFFFFU;
500 }
501
502protected:
503 uint32_t get_range (uint32_t r_max);
504 int get_range (int r_min, int r_max);
505};
506
507typedef random_number_generator<tausworthe_random_generator> rand_gen;
508
509extern rand_gen rndm, rmg_rndm;
510
511INTERFACE_CLASS (attachable)
512struct refcnt_base
513{
514 typedef int refcnt_t;
515 mutable refcnt_t ACC (RW, refcnt);
516
517 MTH void refcnt_inc () const { ++refcnt; }
518 MTH void refcnt_dec () const { --refcnt; }
519
520 refcnt_base () : refcnt (0) { }
521};
522
523// to avoid branches with more advanced compilers
524extern refcnt_base::refcnt_t refcnt_dummy;
185 525
186template<class T> 526template<class T>
187struct refptr 527struct refptr
188{ 528{
529 // p if not null
530 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
531
532 void refcnt_dec ()
533 {
534 if (!is_constant (p))
535 --*refcnt_ref ();
536 else if (p)
537 --p->refcnt;
538 }
539
540 void refcnt_inc ()
541 {
542 if (!is_constant (p))
543 ++*refcnt_ref ();
544 else if (p)
545 ++p->refcnt;
546 }
547
189 T *p; 548 T *p;
190 549
191 refptr () : p(0) { } 550 refptr () : p(0) { }
192 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 551 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
193 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 552 refptr (T *p) : p(p) { refcnt_inc (); }
194 ~refptr () { if (p) p->refcnt_dec (); } 553 ~refptr () { refcnt_dec (); }
195 554
196 const refptr<T> &operator =(T *o) 555 const refptr<T> &operator =(T *o)
197 { 556 {
557 // if decrementing ever destroys we need to reverse the order here
198 if (p) p->refcnt_dec (); 558 refcnt_dec ();
199 p = o; 559 p = o;
200 if (p) p->refcnt_inc (); 560 refcnt_inc ();
201
202 return *this; 561 return *this;
203 } 562 }
204 563
205 const refptr<T> &operator =(const refptr<T> o) 564 const refptr<T> &operator =(const refptr<T> &o)
206 { 565 {
207 *this = o.p; 566 *this = o.p;
208 return *this; 567 return *this;
209 } 568 }
210 569
211 T &operator * () const { return *p; } 570 T &operator * () const { return *p; }
212 T *operator ->() const { return p; } 571 T *operator ->() const { return p; }
213 572
214 operator T *() const { return p; } 573 operator T *() const { return p; }
215}; 574};
216 575
217typedef refptr<maptile> maptile_ptr; 576typedef refptr<maptile> maptile_ptr;
218typedef refptr<object> object_ptr; 577typedef refptr<object> object_ptr;
219typedef refptr<archetype> arch_ptr; 578typedef refptr<archetype> arch_ptr;
220typedef refptr<client> client_ptr; 579typedef refptr<client> client_ptr;
221typedef refptr<player> player_ptr; 580typedef refptr<player> player_ptr;
581typedef refptr<region> region_ptr;
582
583#define STRHSH_NULL 2166136261
584
585static inline uint32_t
586strhsh (const char *s)
587{
588 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
589 // it is about twice as fast as the one-at-a-time one,
590 // with good distribution.
591 // FNV-1a is faster on many cpus because the multiplication
592 // runs concurrently with the looping logic.
593 uint32_t hash = STRHSH_NULL;
594
595 while (*s)
596 hash = (hash ^ *s++) * 16777619U;
597
598 return hash;
599}
600
601static inline uint32_t
602memhsh (const char *s, size_t len)
603{
604 uint32_t hash = STRHSH_NULL;
605
606 while (len--)
607 hash = (hash ^ *s++) * 16777619U;
608
609 return hash;
610}
222 611
223struct str_hash 612struct str_hash
224{ 613{
225 std::size_t operator ()(const char *s) const 614 std::size_t operator ()(const char *s) const
226 { 615 {
227 unsigned long hash = 0;
228
229 /* use the one-at-a-time hash function, which supposedly is
230 * better than the djb2-like one used by perl5.005, but
231 * certainly is better then the bug used here before.
232 * see http://burtleburtle.net/bob/hash/doobs.html
233 */
234 while (*s)
235 {
236 hash += *s++;
237 hash += hash << 10;
238 hash ^= hash >> 6;
239 }
240
241 hash += hash << 3;
242 hash ^= hash >> 11;
243 hash += hash << 15;
244
245 return hash; 616 return strhsh (s);
617 }
618
619 std::size_t operator ()(const shstr &s) const
620 {
621 return strhsh (s);
246 } 622 }
247}; 623};
248 624
249struct str_equal 625struct str_equal
250{ 626{
252 { 628 {
253 return !strcmp (a, b); 629 return !strcmp (a, b);
254 } 630 }
255}; 631};
256 632
633// Mostly the same as std::vector, but insert/erase can reorder
634// the elements, making append(=insert)/remove O(1) instead of O(n).
635//
636// NOTE: only some forms of erase are available
257template<class T> 637template<class T>
258struct unordered_vector : std::vector<T, slice_allocator<T> > 638struct unordered_vector : std::vector<T, slice_allocator<T> >
259{ 639{
260 typedef typename unordered_vector::iterator iterator; 640 typedef typename unordered_vector::iterator iterator;
261 641
271 { 651 {
272 erase ((unsigned int )(i - this->begin ())); 652 erase ((unsigned int )(i - this->begin ()));
273 } 653 }
274}; 654};
275 655
276template<class T, int T::* index> 656// This container blends advantages of linked lists
657// (efficiency) with vectors (random access) by
658// by using an unordered vector and storing the vector
659// index inside the object.
660//
661// + memory-efficient on most 64 bit archs
662// + O(1) insert/remove
663// + free unique (but varying) id for inserted objects
664// + cache-friendly iteration
665// - only works for pointers to structs
666//
667// NOTE: only some forms of erase/insert are available
668typedef int object_vector_index;
669
670template<class T, object_vector_index T::*indexmember>
277struct object_vector : std::vector<T *, slice_allocator<T *> > 671struct object_vector : std::vector<T *, slice_allocator<T *> >
278{ 672{
673 typedef typename object_vector::iterator iterator;
674
675 bool contains (const T *obj) const
676 {
677 return obj->*indexmember;
678 }
679
680 iterator find (const T *obj)
681 {
682 return obj->*indexmember
683 ? this->begin () + obj->*indexmember - 1
684 : this->end ();
685 }
686
687 void push_back (T *obj)
688 {
689 std::vector<T *, slice_allocator<T *> >::push_back (obj);
690 obj->*indexmember = this->size ();
691 }
692
279 void insert (T *obj) 693 void insert (T *obj)
280 { 694 {
281 assert (!(obj->*index));
282 push_back (obj); 695 push_back (obj);
283 obj->*index = this->size ();
284 } 696 }
285 697
286 void insert (T &obj) 698 void insert (T &obj)
287 { 699 {
288 insert (&obj); 700 insert (&obj);
289 } 701 }
290 702
291 void erase (T *obj) 703 void erase (T *obj)
292 { 704 {
293 assert (obj->*index);
294 int pos = obj->*index; 705 unsigned int pos = obj->*indexmember;
295 obj->*index = 0; 706 obj->*indexmember = 0;
296 707
297 if (pos < this->size ()) 708 if (pos < this->size ())
298 { 709 {
299 (*this)[pos - 1] = (*this)[this->size () - 1]; 710 (*this)[pos - 1] = (*this)[this->size () - 1];
300 (*this)[pos - 1]->*index = pos; 711 (*this)[pos - 1]->*indexmember = pos;
301 } 712 }
302 713
303 this->pop_back (); 714 this->pop_back ();
304 } 715 }
305 716
306 void erase (T &obj) 717 void erase (T &obj)
307 { 718 {
308 errase (&obj); 719 erase (&obj);
309 } 720 }
310}; 721};
311
312template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
313template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
314template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; }
315
316template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
317 722
318// basically does what strncpy should do, but appends "..." to strings exceeding length 723// basically does what strncpy should do, but appends "..." to strings exceeding length
724// returns the number of bytes actually used (including \0)
319void assign (char *dst, const char *src, int maxlen); 725int assign (char *dst, const char *src, int maxsize);
320 726
321// type-safe version of assign 727// type-safe version of assign
322template<int N> 728template<int N>
323inline void assign (char (&dst)[N], const char *src) 729inline int assign (char (&dst)[N], const char *src)
324{ 730{
325 assign ((char *)&dst, src, N); 731 return assign ((char *)&dst, src, N);
326} 732}
327 733
328typedef double tstamp; 734typedef double tstamp;
329 735
330// return current time as timestampe 736// return current time as timestamp
331tstamp now (); 737tstamp now ();
332 738
333int similar_direction (int a, int b); 739int similar_direction (int a, int b);
334 740
741// like v?sprintf, but returns a "static" buffer
742char *vformat (const char *format, va_list ap);
743char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
744
745// safety-check player input which will become object->msg
746bool msg_is_safe (const char *msg);
747
748/////////////////////////////////////////////////////////////////////////////
749// threads, very very thin wrappers around pthreads
750
751struct thread
752{
753 pthread_t id;
754
755 void start (void *(*start_routine)(void *), void *arg = 0);
756
757 void cancel ()
758 {
759 pthread_cancel (id);
760 }
761
762 void *join ()
763 {
764 void *ret;
765
766 if (pthread_join (id, &ret))
767 cleanup ("pthread_join failed", 1);
768
769 return ret;
770 }
771};
772
773// note that mutexes are not classes
774typedef pthread_mutex_t smutex;
775
776#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
777 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
778#else
779 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
335#endif 780#endif
336 781
782#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
783#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
784#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
785
786typedef pthread_cond_t scond;
787
788#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
789#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
790#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
791#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
792
793#endif
794

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines