ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.32 by root, Thu Jan 18 19:32:37 2007 UTC vs.
Revision 1.115 by root, Tue Apr 26 14:41:36 2011 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4#if __GNUC__ >= 3 26#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 27
6#else 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) 0 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#endif 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32#include <pthread.h>
9 33
10#include <cstddef> 34#include <cstddef>
11#include <cmath> 35#include <cmath>
12#include <new> 36#include <new>
13#include <vector> 37#include <vector>
15#include <glib.h> 39#include <glib.h>
16 40
17#include <shstr.h> 41#include <shstr.h>
18#include <traits.h> 42#include <traits.h>
19 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
20// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
21#define AUTODECL(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
22 59
60#if cplusplus_does_not_suck
61// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62template<typename T, int N>
63static inline int array_length (const T (&arr)[N])
64{
65 return N;
66}
67#else
68#define array_length(name) (sizeof (name) / sizeof (name [0]))
69#endif
70
23// very ugly macro that basicaly declares and initialises a variable 71// very ugly macro that basically declares and initialises a variable
24// that is in scope for the next statement only 72// that is in scope for the next statement only
25// works only for stuff that can be assigned 0 and converts to false 73// works only for stuff that can be assigned 0 and converts to false
26// (note: works great for pointers) 74// (note: works great for pointers)
27// most ugly macro I ever wrote 75// most ugly macro I ever wrote
28#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 76#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
29 77
30// in range including end 78// in range including end
31#define IN_RANGE_INC(val,beg,end) \ 79#define IN_RANGE_INC(val,beg,end) \
32 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
33 81
34// in range excluding end 82// in range excluding end
35#define IN_RANGE_EXC(val,beg,end) \ 83#define IN_RANGE_EXC(val,beg,end) \
36 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
37 85
86void cleanup (const char *cause, bool make_core = false);
38void fork_abort (const char *msg); 87void fork_abort (const char *msg);
39 88
89// rationale for using (U) not (T) is to reduce signed/unsigned issues,
90// as a is often a constant while b is the variable. it is still a bug, though.
40template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 91template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
41template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 92template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
42template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 93template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94
95template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
43 98
44template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 99template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
45 100
101template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104// sign returns -1 or +1
105template<typename T>
106static inline T sign (T v) { return v < 0 ? -1 : +1; }
107// relies on 2c representation
108template<>
109inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110template<>
111inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112template<>
113inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115// sign0 returns -1, 0 or +1
116template<typename T>
117static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119//clashes with C++0x
120template<typename T, typename U>
121static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129
130template<> inline float div (float val, float div) { return val / div; }
131template<> inline double div (double val, double div) { return val / div; }
132
133// div, round-up
134template<typename T> static inline T div_ru (T val, T div)
135{
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137}
138// div, round-down
139template<typename T> static inline T div_rd (T val, T div)
140{
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142}
143
144// lerp* only work correctly for min_in < max_in
145// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
146template<typename T>
147static inline T
148lerp (T val, T min_in, T max_in, T min_out, T max_out)
149{
150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151}
152
153// lerp, round-down
154template<typename T>
155static inline T
156lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157{
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159}
160
161// lerp, round-up
162template<typename T>
163static inline T
164lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165{
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
167}
168
169// lots of stuff taken from FXT
170
171/* Rotate right. This is used in various places for checksumming */
172//TODO: that sucks, use a better checksum algo
173static inline uint32_t
174rotate_right (uint32_t c, uint32_t count = 1)
175{
176 return (c << (32 - count)) | (c >> count);
177}
178
179static inline uint32_t
180rotate_left (uint32_t c, uint32_t count = 1)
181{
182 return (c >> (32 - count)) | (c << count);
183}
184
185// Return abs(a-b)
186// Both a and b must not have the most significant bit set
187static inline uint32_t
188upos_abs_diff (uint32_t a, uint32_t b)
189{
190 long d1 = b - a;
191 long d2 = (d1 & (d1 >> 31)) << 1;
192
193 return d1 - d2; // == (b - d) - (a + d);
194}
195
196// Both a and b must not have the most significant bit set
197static inline uint32_t
198upos_min (uint32_t a, uint32_t b)
199{
200 int32_t d = b - a;
201 d &= d >> 31;
202 return a + d;
203}
204
205// Both a and b must not have the most significant bit set
206static inline uint32_t
207upos_max (uint32_t a, uint32_t b)
208{
209 int32_t d = b - a;
210 d &= d >> 31;
211 return b - d;
212}
213
46// this is much faster than crossfires original algorithm 214// this is much faster than crossfire's original algorithm
47// on modern cpus 215// on modern cpus
48inline int 216inline int
49isqrt (int n) 217isqrt (int n)
50{ 218{
51 return (int)sqrtf ((float)n); 219 return (int)sqrtf ((float)n);
220}
221
222// this is kind of like the ^^ operator, if it would exist, without sequence point.
223// more handy than it looks like, due to the implicit !! done on its arguments
224inline bool
225logical_xor (bool a, bool b)
226{
227 return a != b;
228}
229
230inline bool
231logical_implies (bool a, bool b)
232{
233 return a <= b;
52} 234}
53 235
54// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 236// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
55#if 0 237#if 0
56// and has a max. error of 6 in the range -100..+100. 238// and has a max. error of 6 in the range -100..+100.
70#else 252#else
71 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 253 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
72#endif 254#endif
73} 255}
74 256
257// can be substantially faster than floor, if your value range allows for it
258template<typename T>
259inline T
260fastfloor (T x)
261{
262 return std::floor (x);
263}
264
265inline float
266fastfloor (float x)
267{
268 return sint32(x) - (x < 0);
269}
270
271inline double
272fastfloor (double x)
273{
274 return sint64(x) - (x < 0);
275}
276
75/* 277/*
76 * absdir(int): Returns a number between 1 and 8, which represent 278 * absdir(int): Returns a number between 1 and 8, which represent
77 * the "absolute" direction of a number (it actually takes care of 279 * the "absolute" direction of a number (it actually takes care of
78 * "overflow" in previous calculations of a direction). 280 * "overflow" in previous calculations of a direction).
79 */ 281 */
81absdir (int d) 283absdir (int d)
82{ 284{
83 return ((d - 1) & 7) + 1; 285 return ((d - 1) & 7) + 1;
84} 286}
85 287
288// avoid ctz name because netbsd or freebsd spams it's namespace with it
289#if GCC_VERSION(3,4)
290static inline int least_significant_bit (uint32_t x)
291{
292 return __builtin_ctz (x);
293}
294#else
295int least_significant_bit (uint32_t x);
296#endif
297
298#define for_all_bits_sparse_32(mask, idxvar) \
299 for (uint32_t idxvar, mask_ = mask; \
300 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
301
302extern ssize_t slice_alloc; // statistics
303
304void *salloc_ (int n) throw (std::bad_alloc);
305void *salloc_ (int n, void *src) throw (std::bad_alloc);
306
307// strictly the same as g_slice_alloc, but never returns 0
308template<typename T>
309inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
310
311// also copies src into the new area, like "memdup"
312// if src is 0, clears the memory
313template<typename T>
314inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
315
316// clears the memory
317template<typename T>
318inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
319
320// for symmetry
321template<typename T>
322inline void sfree (T *ptr, int n = 1) throw ()
323{
324 if (expect_true (ptr))
325 {
326 slice_alloc -= n * sizeof (T);
327 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
328 g_slice_free1 (n * sizeof (T), (void *)ptr);
329 assert (slice_alloc >= 0);//D
330 }
331}
332
333// nulls the pointer
334template<typename T>
335inline void sfree0 (T *&ptr, int n = 1) throw ()
336{
337 sfree<T> (ptr, n);
338 ptr = 0;
339}
340
86// makes dynamically allocated objects zero-initialised 341// makes dynamically allocated objects zero-initialised
87struct zero_initialised 342struct zero_initialised
88{ 343{
89 void *operator new (size_t s, void *p) 344 void *operator new (size_t s, void *p)
90 { 345 {
92 return p; 347 return p;
93 } 348 }
94 349
95 void *operator new (size_t s) 350 void *operator new (size_t s)
96 { 351 {
97 return g_slice_alloc0 (s); 352 return salloc0<char> (s);
98 } 353 }
99 354
100 void *operator new[] (size_t s) 355 void *operator new[] (size_t s)
101 { 356 {
102 return g_slice_alloc0 (s); 357 return salloc0<char> (s);
103 } 358 }
104 359
105 void operator delete (void *p, size_t s) 360 void operator delete (void *p, size_t s)
106 { 361 {
107 g_slice_free1 (s, p); 362 sfree ((char *)p, s);
108 } 363 }
109 364
110 void operator delete[] (void *p, size_t s) 365 void operator delete[] (void *p, size_t s)
111 { 366 {
112 g_slice_free1 (s, p); 367 sfree ((char *)p, s);
113 } 368 }
114}; 369};
115 370
116void *salloc_ (int n) throw (std::bad_alloc); 371// makes dynamically allocated objects zero-initialised
117void *salloc_ (int n, void *src) throw (std::bad_alloc); 372struct slice_allocated
118
119// strictly the same as g_slice_alloc, but never returns 0
120template<typename T>
121inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
122
123// also copies src into the new area, like "memdup"
124// if src is 0, clears the memory
125template<typename T>
126inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
127
128// clears the memory
129template<typename T>
130inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
131
132// for symmetry
133template<typename T>
134inline void sfree (T *ptr, int n = 1) throw ()
135{ 373{
136 g_slice_free1 (n * sizeof (T), (void *)ptr); 374 void *operator new (size_t s, void *p)
137} 375 {
376 return p;
377 }
378
379 void *operator new (size_t s)
380 {
381 return salloc<char> (s);
382 }
383
384 void *operator new[] (size_t s)
385 {
386 return salloc<char> (s);
387 }
388
389 void operator delete (void *p, size_t s)
390 {
391 sfree ((char *)p, s);
392 }
393
394 void operator delete[] (void *p, size_t s)
395 {
396 sfree ((char *)p, s);
397 }
398};
138 399
139// a STL-compatible allocator that uses g_slice 400// a STL-compatible allocator that uses g_slice
140// boy, this is verbose 401// boy, this is verbose
141template<typename Tp> 402template<typename Tp>
142struct slice_allocator 403struct slice_allocator
154 { 415 {
155 typedef slice_allocator<U> other; 416 typedef slice_allocator<U> other;
156 }; 417 };
157 418
158 slice_allocator () throw () { } 419 slice_allocator () throw () { }
159 slice_allocator (const slice_allocator &o) throw () { } 420 slice_allocator (const slice_allocator &) throw () { }
160 template<typename Tp2> 421 template<typename Tp2>
161 slice_allocator (const slice_allocator<Tp2> &) throw () { } 422 slice_allocator (const slice_allocator<Tp2> &) throw () { }
162 423
163 ~slice_allocator () { } 424 ~slice_allocator () { }
164 425
173 void deallocate (pointer p, size_type n) 434 void deallocate (pointer p, size_type n)
174 { 435 {
175 sfree<Tp> (p, n); 436 sfree<Tp> (p, n);
176 } 437 }
177 438
178 size_type max_size ()const throw () 439 size_type max_size () const throw ()
179 { 440 {
180 return size_t (-1) / sizeof (Tp); 441 return size_t (-1) / sizeof (Tp);
181 } 442 }
182 443
183 void construct (pointer p, const Tp &val) 444 void construct (pointer p, const Tp &val)
189 { 450 {
190 p->~Tp (); 451 p->~Tp ();
191 } 452 }
192}; 453};
193 454
194// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 455INTERFACE_CLASS (attachable)
195// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 456struct refcnt_base
196// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
197struct tausworthe_random_generator
198{ 457{
199 uint32_t state [4]; 458 typedef int refcnt_t;
459 mutable refcnt_t ACC (RW, refcnt);
200 460
201 tausworthe_random_generator (uint32_t seed); 461 MTH void refcnt_inc () const { ++refcnt; }
202 uint32_t next (); 462 MTH void refcnt_dec () const { --refcnt; }
203 463
204 uint32_t operator ()(uint32_t r_max) 464 refcnt_base () : refcnt (0) { }
205 {
206 return next () % r_max;
207 }
208
209 // return a number within (min .. max)
210 int operator () (int r_min, int r_max)
211 {
212 return r_min + next () % max (r_max - r_min + 1, 1);
213 }
214
215 double operator ()()
216 {
217 return next () / (double)0xFFFFFFFFU;
218 }
219}; 465};
220 466
221typedef tausworthe_random_generator rand_gen; 467// to avoid branches with more advanced compilers
222 468extern refcnt_base::refcnt_t refcnt_dummy;
223extern rand_gen rndm;
224 469
225template<class T> 470template<class T>
226struct refptr 471struct refptr
227{ 472{
473 // p if not null
474 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
475
476 void refcnt_dec ()
477 {
478 if (!is_constant (p))
479 --*refcnt_ref ();
480 else if (p)
481 --p->refcnt;
482 }
483
484 void refcnt_inc ()
485 {
486 if (!is_constant (p))
487 ++*refcnt_ref ();
488 else if (p)
489 ++p->refcnt;
490 }
491
228 T *p; 492 T *p;
229 493
230 refptr () : p(0) { } 494 refptr () : p(0) { }
231 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 495 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
232 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 496 refptr (T *p) : p(p) { refcnt_inc (); }
233 ~refptr () { if (p) p->refcnt_dec (); } 497 ~refptr () { refcnt_dec (); }
234 498
235 const refptr<T> &operator =(T *o) 499 const refptr<T> &operator =(T *o)
236 { 500 {
501 // if decrementing ever destroys we need to reverse the order here
237 if (p) p->refcnt_dec (); 502 refcnt_dec ();
238 p = o; 503 p = o;
239 if (p) p->refcnt_inc (); 504 refcnt_inc ();
240
241 return *this; 505 return *this;
242 } 506 }
243 507
244 const refptr<T> &operator =(const refptr<T> o) 508 const refptr<T> &operator =(const refptr<T> &o)
245 { 509 {
246 *this = o.p; 510 *this = o.p;
247 return *this; 511 return *this;
248 } 512 }
249 513
250 T &operator * () const { return *p; } 514 T &operator * () const { return *p; }
251 T *operator ->() const { return p; } 515 T *operator ->() const { return p; }
252 516
253 operator T *() const { return p; } 517 operator T *() const { return p; }
254}; 518};
255 519
256typedef refptr<maptile> maptile_ptr; 520typedef refptr<maptile> maptile_ptr;
257typedef refptr<object> object_ptr; 521typedef refptr<object> object_ptr;
258typedef refptr<archetype> arch_ptr; 522typedef refptr<archetype> arch_ptr;
259typedef refptr<client> client_ptr; 523typedef refptr<client> client_ptr;
260typedef refptr<player> player_ptr; 524typedef refptr<player> player_ptr;
525typedef refptr<region> region_ptr;
526
527#define STRHSH_NULL 2166136261
528
529static inline uint32_t
530strhsh (const char *s)
531{
532 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
533 // it is about twice as fast as the one-at-a-time one,
534 // with good distribution.
535 // FNV-1a is faster on many cpus because the multiplication
536 // runs concurrently with the looping logic.
537 // we modify the hash a bit to improve its distribution
538 uint32_t hash = STRHSH_NULL;
539
540 while (*s)
541 hash = (hash ^ *s++) * 16777619U;
542
543 return hash ^ (hash >> 16);
544}
545
546static inline uint32_t
547memhsh (const char *s, size_t len)
548{
549 uint32_t hash = STRHSH_NULL;
550
551 while (len--)
552 hash = (hash ^ *s++) * 16777619U;
553
554 return hash;
555}
261 556
262struct str_hash 557struct str_hash
263{ 558{
264 std::size_t operator ()(const char *s) const 559 std::size_t operator ()(const char *s) const
265 { 560 {
266 unsigned long hash = 0;
267
268 /* use the one-at-a-time hash function, which supposedly is
269 * better than the djb2-like one used by perl5.005, but
270 * certainly is better then the bug used here before.
271 * see http://burtleburtle.net/bob/hash/doobs.html
272 */
273 while (*s)
274 {
275 hash += *s++;
276 hash += hash << 10;
277 hash ^= hash >> 6;
278 }
279
280 hash += hash << 3;
281 hash ^= hash >> 11;
282 hash += hash << 15;
283
284 return hash; 561 return strhsh (s);
562 }
563
564 std::size_t operator ()(const shstr &s) const
565 {
566 return strhsh (s);
285 } 567 }
286}; 568};
287 569
288struct str_equal 570struct str_equal
289{ 571{
291 { 573 {
292 return !strcmp (a, b); 574 return !strcmp (a, b);
293 } 575 }
294}; 576};
295 577
578// Mostly the same as std::vector, but insert/erase can reorder
579// the elements, making append(=insert)/remove O(1) instead of O(n).
580//
581// NOTE: only some forms of erase are available
296template<class T> 582template<class T>
297struct unordered_vector : std::vector<T, slice_allocator<T> > 583struct unordered_vector : std::vector<T, slice_allocator<T> >
298{ 584{
299 typedef typename unordered_vector::iterator iterator; 585 typedef typename unordered_vector::iterator iterator;
300 586
310 { 596 {
311 erase ((unsigned int )(i - this->begin ())); 597 erase ((unsigned int )(i - this->begin ()));
312 } 598 }
313}; 599};
314 600
315template<class T, int T::* index> 601// This container blends advantages of linked lists
602// (efficiency) with vectors (random access) by
603// by using an unordered vector and storing the vector
604// index inside the object.
605//
606// + memory-efficient on most 64 bit archs
607// + O(1) insert/remove
608// + free unique (but varying) id for inserted objects
609// + cache-friendly iteration
610// - only works for pointers to structs
611//
612// NOTE: only some forms of erase/insert are available
613typedef int object_vector_index;
614
615template<class T, object_vector_index T::*indexmember>
316struct object_vector : std::vector<T *, slice_allocator<T *> > 616struct object_vector : std::vector<T *, slice_allocator<T *> >
317{ 617{
618 typedef typename object_vector::iterator iterator;
619
620 bool contains (const T *obj) const
621 {
622 return obj->*indexmember;
623 }
624
625 iterator find (const T *obj)
626 {
627 return obj->*indexmember
628 ? this->begin () + obj->*indexmember - 1
629 : this->end ();
630 }
631
632 void push_back (T *obj)
633 {
634 std::vector<T *, slice_allocator<T *> >::push_back (obj);
635 obj->*indexmember = this->size ();
636 }
637
318 void insert (T *obj) 638 void insert (T *obj)
319 { 639 {
320 assert (!(obj->*index));
321 push_back (obj); 640 push_back (obj);
322 obj->*index = this->size ();
323 } 641 }
324 642
325 void insert (T &obj) 643 void insert (T &obj)
326 { 644 {
327 insert (&obj); 645 insert (&obj);
328 } 646 }
329 647
330 void erase (T *obj) 648 void erase (T *obj)
331 { 649 {
332 assert (obj->*index);
333 int pos = obj->*index; 650 unsigned int pos = obj->*indexmember;
334 obj->*index = 0; 651 obj->*indexmember = 0;
335 652
336 if (pos < this->size ()) 653 if (pos < this->size ())
337 { 654 {
338 (*this)[pos - 1] = (*this)[this->size () - 1]; 655 (*this)[pos - 1] = (*this)[this->size () - 1];
339 (*this)[pos - 1]->*index = pos; 656 (*this)[pos - 1]->*indexmember = pos;
340 } 657 }
341 658
342 this->pop_back (); 659 this->pop_back ();
343 } 660 }
344 661
345 void erase (T &obj) 662 void erase (T &obj)
346 { 663 {
347 errase (&obj); 664 erase (&obj);
348 } 665 }
349}; 666};
667
668/////////////////////////////////////////////////////////////////////////////
669
670// something like a vector or stack, but without
671// out of bounds checking
672template<typename T>
673struct fixed_stack
674{
675 T *data;
676 int size;
677 int max;
678
679 fixed_stack ()
680 : size (0), data (0)
681 {
682 }
683
684 fixed_stack (int max)
685 : size (0), max (max)
686 {
687 data = salloc<T> (max);
688 }
689
690 void reset (int new_max)
691 {
692 sfree (data, max);
693 size = 0;
694 max = new_max;
695 data = salloc<T> (max);
696 }
697
698 void free ()
699 {
700 sfree (data, max);
701 data = 0;
702 }
703
704 ~fixed_stack ()
705 {
706 sfree (data, max);
707 }
708
709 T &operator[](int idx)
710 {
711 return data [idx];
712 }
713
714 void push (T v)
715 {
716 data [size++] = v;
717 }
718
719 T &pop ()
720 {
721 return data [--size];
722 }
723
724 T remove (int idx)
725 {
726 T v = data [idx];
727
728 data [idx] = data [--size];
729
730 return v;
731 }
732};
733
734/////////////////////////////////////////////////////////////////////////////
350 735
351// basically does what strncpy should do, but appends "..." to strings exceeding length 736// basically does what strncpy should do, but appends "..." to strings exceeding length
737// returns the number of bytes actually used (including \0)
352void assign (char *dst, const char *src, int maxlen); 738int assign (char *dst, const char *src, int maxsize);
353 739
354// type-safe version of assign 740// type-safe version of assign
355template<int N> 741template<int N>
356inline void assign (char (&dst)[N], const char *src) 742inline int assign (char (&dst)[N], const char *src)
357{ 743{
358 assign ((char *)&dst, src, N); 744 return assign ((char *)&dst, src, N);
359} 745}
360 746
361typedef double tstamp; 747typedef double tstamp;
362 748
363// return current time as timestampe 749// return current time as timestamp
364tstamp now (); 750tstamp now ();
365 751
366int similar_direction (int a, int b); 752int similar_direction (int a, int b);
367 753
754// like v?sprintf, but returns a "static" buffer
755char *vformat (const char *format, va_list ap);
756char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
757
758// safety-check player input which will become object->msg
759bool msg_is_safe (const char *msg);
760
761/////////////////////////////////////////////////////////////////////////////
762// threads, very very thin wrappers around pthreads
763
764struct thread
765{
766 pthread_t id;
767
768 void start (void *(*start_routine)(void *), void *arg = 0);
769
770 void cancel ()
771 {
772 pthread_cancel (id);
773 }
774
775 void *join ()
776 {
777 void *ret;
778
779 if (pthread_join (id, &ret))
780 cleanup ("pthread_join failed", 1);
781
782 return ret;
783 }
784};
785
786// note that mutexes are not classes
787typedef pthread_mutex_t smutex;
788
789#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
790 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
791#else
792 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
368#endif 793#endif
369 794
795#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
796#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
797#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
798
799typedef pthread_cond_t scond;
800
801#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
802#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
803#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
804#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
805
806#endif
807

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines