ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.36 by root, Thu Jan 25 03:54:45 2007 UTC vs.
Revision 1.101 by root, Wed Apr 28 19:49:50 2010 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#include <compiler.h>
5 27
6#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#else 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define is_constant(c) 0 31
10#endif 32#include <pthread.h>
11 33
12#include <cstddef> 34#include <cstddef>
13#include <cmath> 35#include <cmath>
14#include <new> 36#include <new>
15#include <vector> 37#include <vector>
17#include <glib.h> 39#include <glib.h>
18 40
19#include <shstr.h> 41#include <shstr.h>
20#include <traits.h> 42#include <traits.h>
21 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
24 59
60// could use the sizeof (arr) /( sizeof (arr [0]) here, but C++ is
61// much more obfuscated... :)
62
63template<typename T, int N>
64inline int array_length (const T (&arr)[N])
65{
66 return N;
67}
68
25// very ugly macro that basicaly declares and initialises a variable 69// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 70// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 71// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 72// (note: works great for pointers)
29// most ugly macro I ever wrote 73// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 74#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 75
32// in range including end 76// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 77#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 78 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 79
36// in range excluding end 80// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 81#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 82 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 83
84void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 85void fork_abort (const char *msg);
41 86
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 87// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 88// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 89template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 90template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 91template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 92
93template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
94template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
95template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
96
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 97template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
49 98
99template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
100template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
101
102// sign returns -1 or +1
103template<typename T>
104static inline T sign (T v) { return v < 0 ? -1 : +1; }
105// relies on 2c representation
106template<>
107inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
108
109// sign0 returns -1, 0 or +1
110template<typename T>
111static inline T sign0 (T v) { return v ? sign (v) : 0; }
112
113template<typename T, typename U>
114static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
115
116// div* only work correctly for div > 0
117// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
118template<typename T> static inline T div (T val, T div)
119{
120 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
121}
122// div, round-up
123template<typename T> static inline T div_ru (T val, T div)
124{
125 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126}
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div)
129{
130 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131}
132
133// lerp* only work correctly for min_in < max_in
134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
135template<typename T>
136static inline T
137lerp (T val, T min_in, T max_in, T min_out, T max_out)
138{
139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140}
141
142// lerp, round-down
143template<typename T>
144static inline T
145lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-up
151template<typename T>
152static inline T
153lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156}
157
158// lots of stuff taken from FXT
159
160/* Rotate right. This is used in various places for checksumming */
161//TODO: that sucks, use a better checksum algo
162static inline uint32_t
163rotate_right (uint32_t c, uint32_t count = 1)
164{
165 return (c << (32 - count)) | (c >> count);
166}
167
168static inline uint32_t
169rotate_left (uint32_t c, uint32_t count = 1)
170{
171 return (c >> (32 - count)) | (c << count);
172}
173
174// Return abs(a-b)
175// Both a and b must not have the most significant bit set
176static inline uint32_t
177upos_abs_diff (uint32_t a, uint32_t b)
178{
179 long d1 = b - a;
180 long d2 = (d1 & (d1 >> 31)) << 1;
181
182 return d1 - d2; // == (b - d) - (a + d);
183}
184
185// Both a and b must not have the most significant bit set
186static inline uint32_t
187upos_min (uint32_t a, uint32_t b)
188{
189 int32_t d = b - a;
190 d &= d >> 31;
191 return a + d;
192}
193
194// Both a and b must not have the most significant bit set
195static inline uint32_t
196upos_max (uint32_t a, uint32_t b)
197{
198 int32_t d = b - a;
199 d &= d >> 31;
200 return b - d;
201}
202
50// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
51// on modern cpus 204// on modern cpus
52inline int 205inline int
53isqrt (int n) 206isqrt (int n)
54{ 207{
55 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
56} 223}
57 224
58// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
59#if 0 226#if 0
60// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
85absdir (int d) 252absdir (int d)
86{ 253{
87 return ((d - 1) & 7) + 1; 254 return ((d - 1) & 7) + 1;
88} 255}
89 256
257// avoid ctz name because netbsd or freebsd spams it's namespace with it
258#if GCC_VERSION(3,4)
259static inline int least_significant_bit (uint32_t x)
260{
261 return __builtin_ctz (x);
262}
263#else
264int least_significant_bit (uint32_t x);
265#endif
266
267#define for_all_bits_sparse_32(mask, idxvar) \
268 for (uint32_t idxvar, mask_ = mask; \
269 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
270
271extern ssize_t slice_alloc; // statistics
272
273void *salloc_ (int n) throw (std::bad_alloc);
274void *salloc_ (int n, void *src) throw (std::bad_alloc);
275
276// strictly the same as g_slice_alloc, but never returns 0
277template<typename T>
278inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
279
280// also copies src into the new area, like "memdup"
281// if src is 0, clears the memory
282template<typename T>
283inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
284
285// clears the memory
286template<typename T>
287inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
288
289// for symmetry
290template<typename T>
291inline void sfree (T *ptr, int n = 1) throw ()
292{
293 if (expect_true (ptr))
294 {
295 slice_alloc -= n * sizeof (T);
296 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
297 g_slice_free1 (n * sizeof (T), (void *)ptr);
298 assert (slice_alloc >= 0);//D
299 }
300}
301
302// nulls the pointer
303template<typename T>
304inline void sfree0 (T *&ptr, int n = 1) throw ()
305{
306 sfree<T> (ptr, n);
307 ptr = 0;
308}
309
90// makes dynamically allocated objects zero-initialised 310// makes dynamically allocated objects zero-initialised
91struct zero_initialised 311struct zero_initialised
92{ 312{
93 void *operator new (size_t s, void *p) 313 void *operator new (size_t s, void *p)
94 { 314 {
96 return p; 316 return p;
97 } 317 }
98 318
99 void *operator new (size_t s) 319 void *operator new (size_t s)
100 { 320 {
101 return g_slice_alloc0 (s); 321 return salloc0<char> (s);
102 } 322 }
103 323
104 void *operator new[] (size_t s) 324 void *operator new[] (size_t s)
105 { 325 {
106 return g_slice_alloc0 (s); 326 return salloc0<char> (s);
107 } 327 }
108 328
109 void operator delete (void *p, size_t s) 329 void operator delete (void *p, size_t s)
110 { 330 {
111 g_slice_free1 (s, p); 331 sfree ((char *)p, s);
112 } 332 }
113 333
114 void operator delete[] (void *p, size_t s) 334 void operator delete[] (void *p, size_t s)
115 { 335 {
116 g_slice_free1 (s, p); 336 sfree ((char *)p, s);
117 } 337 }
118}; 338};
119 339
120void *salloc_ (int n) throw (std::bad_alloc); 340// makes dynamically allocated objects zero-initialised
121void *salloc_ (int n, void *src) throw (std::bad_alloc); 341struct slice_allocated
122
123// strictly the same as g_slice_alloc, but never returns 0
124template<typename T>
125inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
126
127// also copies src into the new area, like "memdup"
128// if src is 0, clears the memory
129template<typename T>
130inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
131
132// clears the memory
133template<typename T>
134inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
135
136// for symmetry
137template<typename T>
138inline void sfree (T *ptr, int n = 1) throw ()
139{ 342{
140#ifdef PREFER_MALLOC 343 void *operator new (size_t s, void *p)
141 free (ptr); 344 {
142#else 345 return p;
143 g_slice_free1 (n * sizeof (T), (void *)ptr); 346 }
144#endif 347
145} 348 void *operator new (size_t s)
349 {
350 return salloc<char> (s);
351 }
352
353 void *operator new[] (size_t s)
354 {
355 return salloc<char> (s);
356 }
357
358 void operator delete (void *p, size_t s)
359 {
360 sfree ((char *)p, s);
361 }
362
363 void operator delete[] (void *p, size_t s)
364 {
365 sfree ((char *)p, s);
366 }
367};
146 368
147// a STL-compatible allocator that uses g_slice 369// a STL-compatible allocator that uses g_slice
148// boy, this is verbose 370// boy, this is verbose
149template<typename Tp> 371template<typename Tp>
150struct slice_allocator 372struct slice_allocator
162 { 384 {
163 typedef slice_allocator<U> other; 385 typedef slice_allocator<U> other;
164 }; 386 };
165 387
166 slice_allocator () throw () { } 388 slice_allocator () throw () { }
167 slice_allocator (const slice_allocator &o) throw () { } 389 slice_allocator (const slice_allocator &) throw () { }
168 template<typename Tp2> 390 template<typename Tp2>
169 slice_allocator (const slice_allocator<Tp2> &) throw () { } 391 slice_allocator (const slice_allocator<Tp2> &) throw () { }
170 392
171 ~slice_allocator () { } 393 ~slice_allocator () { }
172 394
181 void deallocate (pointer p, size_type n) 403 void deallocate (pointer p, size_type n)
182 { 404 {
183 sfree<Tp> (p, n); 405 sfree<Tp> (p, n);
184 } 406 }
185 407
186 size_type max_size ()const throw () 408 size_type max_size () const throw ()
187 { 409 {
188 return size_t (-1) / sizeof (Tp); 410 return size_t (-1) / sizeof (Tp);
189 } 411 }
190 412
191 void construct (pointer p, const Tp &val) 413 void construct (pointer p, const Tp &val)
202// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 424// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
203// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 425// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
204// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 426// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
205struct tausworthe_random_generator 427struct tausworthe_random_generator
206{ 428{
207 // generator
208 uint32_t state [4]; 429 uint32_t state [4];
209 430
210 void operator =(const tausworthe_random_generator &src) 431 void operator =(const tausworthe_random_generator &src)
211 { 432 {
212 state [0] = src.state [0]; 433 state [0] = src.state [0];
215 state [3] = src.state [3]; 436 state [3] = src.state [3];
216 } 437 }
217 438
218 void seed (uint32_t seed); 439 void seed (uint32_t seed);
219 uint32_t next (); 440 uint32_t next ();
441};
220 442
221 // uniform distribution 443// Xorshift RNGs, George Marsaglia
444// http://www.jstatsoft.org/v08/i14/paper
445// this one is about 40% faster than the tausworthe one above (i.e. not much),
446// despite the inlining, and has the issue of only creating 2**32-1 numbers.
447// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
448struct xorshift_random_generator
449{
450 uint32_t x, y;
451
452 void operator =(const xorshift_random_generator &src)
453 {
454 x = src.x;
455 y = src.y;
456 }
457
458 void seed (uint32_t seed)
459 {
460 x = seed;
461 y = seed * 69069U;
462 }
463
464 uint32_t next ()
465 {
466 uint32_t t = x ^ (x << 10);
467 x = y;
468 y = y ^ (y >> 13) ^ t ^ (t >> 10);
469 return y;
470 }
471};
472
473template<class generator>
474struct random_number_generator : generator
475{
476 // uniform distribution, 0 .. max (0, num - 1)
222 uint32_t operator ()(uint32_t r_max) 477 uint32_t operator ()(uint32_t num)
223 { 478 {
224 return is_constant (r_max) 479 return !is_constant (num) ? get_range (num) // non-constant
225 ? this->next () % r_max 480 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
226 : get_range (r_max); 481 : this->next () & (num - 1); // constant, power-of-two
227 } 482 }
228 483
229 // return a number within (min .. max) 484 // return a number within the closed interval [min .. max]
230 int operator () (int r_min, int r_max) 485 int operator () (int r_min, int r_max)
231 { 486 {
232 return is_constant (r_min) && is_constant (r_max) 487 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
233 ? r_min + (*this) (max (r_max - r_min + 1, 1)) 488 ? r_min + operator ()(r_max - r_min + 1)
234 : get_range (r_min, r_max); 489 : get_range (r_min, r_max);
235 } 490 }
236 491
492 // return a number within the closed interval [0..1]
237 double operator ()() 493 double operator ()()
238 { 494 {
239 return this->next () / (double)0xFFFFFFFFU; 495 return this->next () / (double)0xFFFFFFFFU;
240 } 496 }
241 497
242protected: 498protected:
243 uint32_t get_range (uint32_t r_max); 499 uint32_t get_range (uint32_t r_max);
244 int get_range (int r_min, int r_max); 500 int get_range (int r_min, int r_max);
245}; 501};
246 502
247typedef tausworthe_random_generator rand_gen; 503typedef random_number_generator<tausworthe_random_generator> rand_gen;
248 504
249extern rand_gen rndm; 505extern rand_gen rndm, rmg_rndm;
506
507INTERFACE_CLASS (attachable)
508struct refcnt_base
509{
510 typedef int refcnt_t;
511 mutable refcnt_t ACC (RW, refcnt);
512
513 MTH void refcnt_inc () const { ++refcnt; }
514 MTH void refcnt_dec () const { --refcnt; }
515
516 refcnt_base () : refcnt (0) { }
517};
518
519// to avoid branches with more advanced compilers
520extern refcnt_base::refcnt_t refcnt_dummy;
250 521
251template<class T> 522template<class T>
252struct refptr 523struct refptr
253{ 524{
525 // p if not null
526 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
527
528 void refcnt_dec ()
529 {
530 if (!is_constant (p))
531 --*refcnt_ref ();
532 else if (p)
533 --p->refcnt;
534 }
535
536 void refcnt_inc ()
537 {
538 if (!is_constant (p))
539 ++*refcnt_ref ();
540 else if (p)
541 ++p->refcnt;
542 }
543
254 T *p; 544 T *p;
255 545
256 refptr () : p(0) { } 546 refptr () : p(0) { }
257 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 547 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
258 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 548 refptr (T *p) : p(p) { refcnt_inc (); }
259 ~refptr () { if (p) p->refcnt_dec (); } 549 ~refptr () { refcnt_dec (); }
260 550
261 const refptr<T> &operator =(T *o) 551 const refptr<T> &operator =(T *o)
262 { 552 {
553 // if decrementing ever destroys we need to reverse the order here
263 if (p) p->refcnt_dec (); 554 refcnt_dec ();
264 p = o; 555 p = o;
265 if (p) p->refcnt_inc (); 556 refcnt_inc ();
266
267 return *this; 557 return *this;
268 } 558 }
269 559
270 const refptr<T> &operator =(const refptr<T> o) 560 const refptr<T> &operator =(const refptr<T> &o)
271 { 561 {
272 *this = o.p; 562 *this = o.p;
273 return *this; 563 return *this;
274 } 564 }
275 565
276 T &operator * () const { return *p; } 566 T &operator * () const { return *p; }
277 T *operator ->() const { return p; } 567 T *operator ->() const { return p; }
278 568
279 operator T *() const { return p; } 569 operator T *() const { return p; }
280}; 570};
281 571
282typedef refptr<maptile> maptile_ptr; 572typedef refptr<maptile> maptile_ptr;
283typedef refptr<object> object_ptr; 573typedef refptr<object> object_ptr;
284typedef refptr<archetype> arch_ptr; 574typedef refptr<archetype> arch_ptr;
285typedef refptr<client> client_ptr; 575typedef refptr<client> client_ptr;
286typedef refptr<player> player_ptr; 576typedef refptr<player> player_ptr;
287 577
578#define STRHSH_NULL 2166136261
579
580static inline uint32_t
581strhsh (const char *s)
582{
583 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
584 // it is about twice as fast as the one-at-a-time one,
585 // with good distribution.
586 // FNV-1a is faster on many cpus because the multiplication
587 // runs concurrently with the looping logic.
588 uint32_t hash = STRHSH_NULL;
589
590 while (*s)
591 hash = (hash ^ *s++) * 16777619U;
592
593 return hash;
594}
595
596static inline uint32_t
597memhsh (const char *s, size_t len)
598{
599 uint32_t hash = STRHSH_NULL;
600
601 while (len--)
602 hash = (hash ^ *s++) * 16777619U;
603
604 return hash;
605}
606
288struct str_hash 607struct str_hash
289{ 608{
290 std::size_t operator ()(const char *s) const 609 std::size_t operator ()(const char *s) const
291 { 610 {
292 unsigned long hash = 0;
293
294 /* use the one-at-a-time hash function, which supposedly is
295 * better than the djb2-like one used by perl5.005, but
296 * certainly is better then the bug used here before.
297 * see http://burtleburtle.net/bob/hash/doobs.html
298 */
299 while (*s)
300 {
301 hash += *s++;
302 hash += hash << 10;
303 hash ^= hash >> 6;
304 }
305
306 hash += hash << 3;
307 hash ^= hash >> 11;
308 hash += hash << 15;
309
310 return hash; 611 return strhsh (s);
612 }
613
614 std::size_t operator ()(const shstr &s) const
615 {
616 return strhsh (s);
311 } 617 }
312}; 618};
313 619
314struct str_equal 620struct str_equal
315{ 621{
317 { 623 {
318 return !strcmp (a, b); 624 return !strcmp (a, b);
319 } 625 }
320}; 626};
321 627
628// Mostly the same as std::vector, but insert/erase can reorder
629// the elements, making append(=insert)/remove O(1) instead of O(n).
630//
631// NOTE: only some forms of erase are available
322template<class T> 632template<class T>
323struct unordered_vector : std::vector<T, slice_allocator<T> > 633struct unordered_vector : std::vector<T, slice_allocator<T> >
324{ 634{
325 typedef typename unordered_vector::iterator iterator; 635 typedef typename unordered_vector::iterator iterator;
326 636
336 { 646 {
337 erase ((unsigned int )(i - this->begin ())); 647 erase ((unsigned int )(i - this->begin ()));
338 } 648 }
339}; 649};
340 650
341template<class T, int T::* index> 651// This container blends advantages of linked lists
652// (efficiency) with vectors (random access) by
653// by using an unordered vector and storing the vector
654// index inside the object.
655//
656// + memory-efficient on most 64 bit archs
657// + O(1) insert/remove
658// + free unique (but varying) id for inserted objects
659// + cache-friendly iteration
660// - only works for pointers to structs
661//
662// NOTE: only some forms of erase/insert are available
663typedef int object_vector_index;
664
665template<class T, object_vector_index T::*indexmember>
342struct object_vector : std::vector<T *, slice_allocator<T *> > 666struct object_vector : std::vector<T *, slice_allocator<T *> >
343{ 667{
668 typedef typename object_vector::iterator iterator;
669
670 bool contains (const T *obj) const
671 {
672 return obj->*indexmember;
673 }
674
675 iterator find (const T *obj)
676 {
677 return obj->*indexmember
678 ? this->begin () + obj->*indexmember - 1
679 : this->end ();
680 }
681
682 void push_back (T *obj)
683 {
684 std::vector<T *, slice_allocator<T *> >::push_back (obj);
685 obj->*indexmember = this->size ();
686 }
687
344 void insert (T *obj) 688 void insert (T *obj)
345 { 689 {
346 assert (!(obj->*index));
347 push_back (obj); 690 push_back (obj);
348 obj->*index = this->size ();
349 } 691 }
350 692
351 void insert (T &obj) 693 void insert (T &obj)
352 { 694 {
353 insert (&obj); 695 insert (&obj);
354 } 696 }
355 697
356 void erase (T *obj) 698 void erase (T *obj)
357 { 699 {
358 assert (obj->*index);
359 int pos = obj->*index; 700 unsigned int pos = obj->*indexmember;
360 obj->*index = 0; 701 obj->*indexmember = 0;
361 702
362 if (pos < this->size ()) 703 if (pos < this->size ())
363 { 704 {
364 (*this)[pos - 1] = (*this)[this->size () - 1]; 705 (*this)[pos - 1] = (*this)[this->size () - 1];
365 (*this)[pos - 1]->*index = pos; 706 (*this)[pos - 1]->*indexmember = pos;
366 } 707 }
367 708
368 this->pop_back (); 709 this->pop_back ();
369 } 710 }
370 711
371 void erase (T &obj) 712 void erase (T &obj)
372 { 713 {
373 errase (&obj); 714 erase (&obj);
374 } 715 }
375}; 716};
376 717
377// basically does what strncpy should do, but appends "..." to strings exceeding length 718// basically does what strncpy should do, but appends "..." to strings exceeding length
719// returns the number of bytes actually used (including \0)
378void assign (char *dst, const char *src, int maxlen); 720int assign (char *dst, const char *src, int maxsize);
379 721
380// type-safe version of assign 722// type-safe version of assign
381template<int N> 723template<int N>
382inline void assign (char (&dst)[N], const char *src) 724inline int assign (char (&dst)[N], const char *src)
383{ 725{
384 assign ((char *)&dst, src, N); 726 return assign ((char *)&dst, src, N);
385} 727}
386 728
387typedef double tstamp; 729typedef double tstamp;
388 730
389// return current time as timestampe 731// return current time as timestamp
390tstamp now (); 732tstamp now ();
391 733
392int similar_direction (int a, int b); 734int similar_direction (int a, int b);
393 735
736// like v?sprintf, but returns a "static" buffer
737char *vformat (const char *format, va_list ap);
738char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
739
740// safety-check player input which will become object->msg
741bool msg_is_safe (const char *msg);
742
743/////////////////////////////////////////////////////////////////////////////
744// threads, very very thin wrappers around pthreads
745
746struct thread
747{
748 pthread_t id;
749
750 void start (void *(*start_routine)(void *), void *arg = 0);
751
752 void cancel ()
753 {
754 pthread_cancel (id);
755 }
756
757 void *join ()
758 {
759 void *ret;
760
761 if (pthread_join (id, &ret))
762 cleanup ("pthread_join failed", 1);
763
764 return ret;
765 }
766};
767
768// note that mutexes are not classes
769typedef pthread_mutex_t smutex;
770
771#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
772 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
773#else
774 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
394#endif 775#endif
395 776
777#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
778#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
779#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
780
781typedef pthread_cond_t scond;
782
783#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
784#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
785#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
786#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
787
788#endif
789

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines