ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.36 by root, Thu Jan 25 03:54:45 2007 UTC vs.
Revision 1.85 by root, Thu Jan 1 20:49:48 2009 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
4//#define PREFER_MALLOC 25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
5 28
6#if __GNUC__ >= 3 29#if __GNUC__ >= 3
7# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33# define noinline __attribute__((__noinline__))
8#else 34#else
9# define is_constant(c) 0 35# define is_constant(c) 0
36# define expect(expr,value) (expr)
37# define prefetch(addr,rw,locality)
38# define noinline
10#endif 39#endif
40
41#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
42# define decltype(x) typeof(x)
43#endif
44
45// put into ifs if you are very sure that the expression
46// is mostly true or mosty false. note that these return
47// booleans, not the expression.
48#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
49#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
50
51#include <pthread.h>
11 52
12#include <cstddef> 53#include <cstddef>
13#include <cmath> 54#include <cmath>
14#include <new> 55#include <new>
15#include <vector> 56#include <vector>
17#include <glib.h> 58#include <glib.h>
18 59
19#include <shstr.h> 60#include <shstr.h>
20#include <traits.h> 61#include <traits.h>
21 62
63#if DEBUG_SALLOC
64# define g_slice_alloc0(s) debug_slice_alloc0(s)
65# define g_slice_alloc(s) debug_slice_alloc(s)
66# define g_slice_free1(s,p) debug_slice_free1(s,p)
67void *g_slice_alloc (unsigned long size);
68void *g_slice_alloc0 (unsigned long size);
69void g_slice_free1 (unsigned long size, void *ptr);
70#elif PREFER_MALLOC
71# define g_slice_alloc0(s) calloc (1, (s))
72# define g_slice_alloc(s) malloc ((s))
73# define g_slice_free1(s,p) free ((p))
74#endif
75
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 76// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 77#define auto(var,expr) decltype(expr) var = (expr)
24 78
25// very ugly macro that basicaly declares and initialises a variable 79// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 80// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 81// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 82// (note: works great for pointers)
29// most ugly macro I ever wrote 83// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 84#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 85
32// in range including end 86// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 87#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 88 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 89
36// in range excluding end 90// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 91#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 92 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 93
94void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 95void fork_abort (const char *msg);
41 96
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 97// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 98// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 99template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 100template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 101template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 102
103template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
104template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
105template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
106
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 107template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
108
109template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
110template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
111
112// sign returns -1 or +1
113template<typename T>
114static inline T sign (T v) { return v < 0 ? -1 : +1; }
115// relies on 2c representation
116template<>
117inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
118
119// sign0 returns -1, 0 or +1
120template<typename T>
121static inline T sign0 (T v) { return v ? sign (v) : 0; }
122
123// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
125// div, round-up
126template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
129
130template<typename T>
131static inline T
132lerp (T val, T min_in, T max_in, T min_out, T max_out)
133{
134 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
135}
136
137// lerp, round-down
138template<typename T>
139static inline T
140lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
141{
142 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
143}
144
145// lerp, round-up
146template<typename T>
147static inline T
148lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
149{
150 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151}
152
153// lots of stuff taken from FXT
154
155/* Rotate right. This is used in various places for checksumming */
156//TODO: that sucks, use a better checksum algo
157static inline uint32_t
158rotate_right (uint32_t c, uint32_t count = 1)
159{
160 return (c << (32 - count)) | (c >> count);
161}
162
163static inline uint32_t
164rotate_left (uint32_t c, uint32_t count = 1)
165{
166 return (c >> (32 - count)) | (c << count);
167}
168
169// Return abs(a-b)
170// Both a and b must not have the most significant bit set
171static inline uint32_t
172upos_abs_diff (uint32_t a, uint32_t b)
173{
174 long d1 = b - a;
175 long d2 = (d1 & (d1 >> 31)) << 1;
176
177 return d1 - d2; // == (b - d) - (a + d);
178}
179
180// Both a and b must not have the most significant bit set
181static inline uint32_t
182upos_min (uint32_t a, uint32_t b)
183{
184 int32_t d = b - a;
185 d &= d >> 31;
186 return a + d;
187}
188
189// Both a and b must not have the most significant bit set
190static inline uint32_t
191upos_max (uint32_t a, uint32_t b)
192{
193 int32_t d = b - a;
194 d &= d >> 31;
195 return b - d;
196}
49 197
50// this is much faster than crossfires original algorithm 198// this is much faster than crossfires original algorithm
51// on modern cpus 199// on modern cpus
52inline int 200inline int
53isqrt (int n) 201isqrt (int n)
85absdir (int d) 233absdir (int d)
86{ 234{
87 return ((d - 1) & 7) + 1; 235 return ((d - 1) & 7) + 1;
88} 236}
89 237
238extern ssize_t slice_alloc; // statistics
239
240void *salloc_ (int n) throw (std::bad_alloc);
241void *salloc_ (int n, void *src) throw (std::bad_alloc);
242
243// strictly the same as g_slice_alloc, but never returns 0
244template<typename T>
245inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
246
247// also copies src into the new area, like "memdup"
248// if src is 0, clears the memory
249template<typename T>
250inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
251
252// clears the memory
253template<typename T>
254inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
255
256// for symmetry
257template<typename T>
258inline void sfree (T *ptr, int n = 1) throw ()
259{
260 if (expect_true (ptr))
261 {
262 slice_alloc -= n * sizeof (T);
263 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
264 g_slice_free1 (n * sizeof (T), (void *)ptr);
265 assert (slice_alloc >= 0);//D
266 }
267}
268
269// nulls the pointer
270template<typename T>
271inline void sfree0 (T *&ptr, int n = 1) throw ()
272{
273 sfree<T> (ptr, n);
274 ptr = 0;
275}
276
90// makes dynamically allocated objects zero-initialised 277// makes dynamically allocated objects zero-initialised
91struct zero_initialised 278struct zero_initialised
92{ 279{
93 void *operator new (size_t s, void *p) 280 void *operator new (size_t s, void *p)
94 { 281 {
96 return p; 283 return p;
97 } 284 }
98 285
99 void *operator new (size_t s) 286 void *operator new (size_t s)
100 { 287 {
101 return g_slice_alloc0 (s); 288 return salloc0<char> (s);
102 } 289 }
103 290
104 void *operator new[] (size_t s) 291 void *operator new[] (size_t s)
105 { 292 {
106 return g_slice_alloc0 (s); 293 return salloc0<char> (s);
107 } 294 }
108 295
109 void operator delete (void *p, size_t s) 296 void operator delete (void *p, size_t s)
110 { 297 {
111 g_slice_free1 (s, p); 298 sfree ((char *)p, s);
112 } 299 }
113 300
114 void operator delete[] (void *p, size_t s) 301 void operator delete[] (void *p, size_t s)
115 { 302 {
116 g_slice_free1 (s, p); 303 sfree ((char *)p, s);
117 } 304 }
118}; 305};
119 306
120void *salloc_ (int n) throw (std::bad_alloc); 307// makes dynamically allocated objects zero-initialised
121void *salloc_ (int n, void *src) throw (std::bad_alloc); 308struct slice_allocated
122
123// strictly the same as g_slice_alloc, but never returns 0
124template<typename T>
125inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
126
127// also copies src into the new area, like "memdup"
128// if src is 0, clears the memory
129template<typename T>
130inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
131
132// clears the memory
133template<typename T>
134inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
135
136// for symmetry
137template<typename T>
138inline void sfree (T *ptr, int n = 1) throw ()
139{ 309{
140#ifdef PREFER_MALLOC 310 void *operator new (size_t s, void *p)
141 free (ptr); 311 {
142#else 312 return p;
143 g_slice_free1 (n * sizeof (T), (void *)ptr); 313 }
144#endif 314
145} 315 void *operator new (size_t s)
316 {
317 return salloc<char> (s);
318 }
319
320 void *operator new[] (size_t s)
321 {
322 return salloc<char> (s);
323 }
324
325 void operator delete (void *p, size_t s)
326 {
327 sfree ((char *)p, s);
328 }
329
330 void operator delete[] (void *p, size_t s)
331 {
332 sfree ((char *)p, s);
333 }
334};
146 335
147// a STL-compatible allocator that uses g_slice 336// a STL-compatible allocator that uses g_slice
148// boy, this is verbose 337// boy, this is verbose
149template<typename Tp> 338template<typename Tp>
150struct slice_allocator 339struct slice_allocator
162 { 351 {
163 typedef slice_allocator<U> other; 352 typedef slice_allocator<U> other;
164 }; 353 };
165 354
166 slice_allocator () throw () { } 355 slice_allocator () throw () { }
167 slice_allocator (const slice_allocator &o) throw () { } 356 slice_allocator (const slice_allocator &) throw () { }
168 template<typename Tp2> 357 template<typename Tp2>
169 slice_allocator (const slice_allocator<Tp2> &) throw () { } 358 slice_allocator (const slice_allocator<Tp2> &) throw () { }
170 359
171 ~slice_allocator () { } 360 ~slice_allocator () { }
172 361
181 void deallocate (pointer p, size_type n) 370 void deallocate (pointer p, size_type n)
182 { 371 {
183 sfree<Tp> (p, n); 372 sfree<Tp> (p, n);
184 } 373 }
185 374
186 size_type max_size ()const throw () 375 size_type max_size () const throw ()
187 { 376 {
188 return size_t (-1) / sizeof (Tp); 377 return size_t (-1) / sizeof (Tp);
189 } 378 }
190 379
191 void construct (pointer p, const Tp &val) 380 void construct (pointer p, const Tp &val)
202// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 391// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
203// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 392// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
204// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 393// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
205struct tausworthe_random_generator 394struct tausworthe_random_generator
206{ 395{
207 // generator
208 uint32_t state [4]; 396 uint32_t state [4];
209 397
210 void operator =(const tausworthe_random_generator &src) 398 void operator =(const tausworthe_random_generator &src)
211 { 399 {
212 state [0] = src.state [0]; 400 state [0] = src.state [0];
215 state [3] = src.state [3]; 403 state [3] = src.state [3];
216 } 404 }
217 405
218 void seed (uint32_t seed); 406 void seed (uint32_t seed);
219 uint32_t next (); 407 uint32_t next ();
408};
220 409
221 // uniform distribution 410// Xorshift RNGs, George Marsaglia
411// http://www.jstatsoft.org/v08/i14/paper
412// this one is about 40% faster than the tausworthe one above (i.e. not much),
413// despite the inlining, and has the issue of only creating 2**32-1 numbers.
414struct xorshift_random_generator
415{
416 uint32_t x, y;
417
418 void operator =(const xorshift_random_generator &src)
419 {
420 x = src.x;
421 y = src.y;
422 }
423
424 void seed (uint32_t seed)
425 {
426 x = seed;
427 y = seed * 69069U;
428 }
429
430 uint32_t next ()
431 {
432 uint32_t t = x ^ (x << 10);
433 x = y;
434 y = y ^ (y >> 13) ^ t ^ (t >> 10);
435 return y;
436 }
437};
438
439template<class generator>
440struct random_number_generator : generator
441{
442 // uniform distribution, 0 .. max (0, num - 1)
222 uint32_t operator ()(uint32_t r_max) 443 uint32_t operator ()(uint32_t num)
223 { 444 {
224 return is_constant (r_max) 445 return !is_constant (num) ? get_range (num) // non-constant
225 ? this->next () % r_max 446 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
226 : get_range (r_max); 447 : this->next () & (num - 1); // constant, power-of-two
227 } 448 }
228 449
229 // return a number within (min .. max) 450 // return a number within (min .. max)
230 int operator () (int r_min, int r_max) 451 int operator () (int r_min, int r_max)
231 { 452 {
232 return is_constant (r_min) && is_constant (r_max) 453 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
233 ? r_min + (*this) (max (r_max - r_min + 1, 1)) 454 ? r_min + operator ()(r_max - r_min + 1)
234 : get_range (r_min, r_max); 455 : get_range (r_min, r_max);
235 } 456 }
236 457
237 double operator ()() 458 double operator ()()
238 { 459 {
242protected: 463protected:
243 uint32_t get_range (uint32_t r_max); 464 uint32_t get_range (uint32_t r_max);
244 int get_range (int r_min, int r_max); 465 int get_range (int r_min, int r_max);
245}; 466};
246 467
247typedef tausworthe_random_generator rand_gen; 468typedef random_number_generator<tausworthe_random_generator> rand_gen;
248 469
249extern rand_gen rndm; 470extern rand_gen rndm, rmg_rndm;
471
472INTERFACE_CLASS (attachable)
473struct refcnt_base
474{
475 typedef int refcnt_t;
476 mutable refcnt_t ACC (RW, refcnt);
477
478 MTH void refcnt_inc () const { ++refcnt; }
479 MTH void refcnt_dec () const { --refcnt; }
480
481 refcnt_base () : refcnt (0) { }
482};
483
484// to avoid branches with more advanced compilers
485extern refcnt_base::refcnt_t refcnt_dummy;
250 486
251template<class T> 487template<class T>
252struct refptr 488struct refptr
253{ 489{
490 // p if not null
491 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
492
493 void refcnt_dec ()
494 {
495 if (!is_constant (p))
496 --*refcnt_ref ();
497 else if (p)
498 --p->refcnt;
499 }
500
501 void refcnt_inc ()
502 {
503 if (!is_constant (p))
504 ++*refcnt_ref ();
505 else if (p)
506 ++p->refcnt;
507 }
508
254 T *p; 509 T *p;
255 510
256 refptr () : p(0) { } 511 refptr () : p(0) { }
257 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 512 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
258 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 513 refptr (T *p) : p(p) { refcnt_inc (); }
259 ~refptr () { if (p) p->refcnt_dec (); } 514 ~refptr () { refcnt_dec (); }
260 515
261 const refptr<T> &operator =(T *o) 516 const refptr<T> &operator =(T *o)
262 { 517 {
518 // if decrementing ever destroys we need to reverse the order here
263 if (p) p->refcnt_dec (); 519 refcnt_dec ();
264 p = o; 520 p = o;
265 if (p) p->refcnt_inc (); 521 refcnt_inc ();
266
267 return *this; 522 return *this;
268 } 523 }
269 524
270 const refptr<T> &operator =(const refptr<T> o) 525 const refptr<T> &operator =(const refptr<T> &o)
271 { 526 {
272 *this = o.p; 527 *this = o.p;
273 return *this; 528 return *this;
274 } 529 }
275 530
276 T &operator * () const { return *p; } 531 T &operator * () const { return *p; }
277 T *operator ->() const { return p; } 532 T *operator ->() const { return p; }
278 533
279 operator T *() const { return p; } 534 operator T *() const { return p; }
280}; 535};
281 536
282typedef refptr<maptile> maptile_ptr; 537typedef refptr<maptile> maptile_ptr;
287 542
288struct str_hash 543struct str_hash
289{ 544{
290 std::size_t operator ()(const char *s) const 545 std::size_t operator ()(const char *s) const
291 { 546 {
292 unsigned long hash = 0; 547#if 0
548 uint32_t hash = 0;
293 549
294 /* use the one-at-a-time hash function, which supposedly is 550 /* use the one-at-a-time hash function, which supposedly is
295 * better than the djb2-like one used by perl5.005, but 551 * better than the djb2-like one used by perl5.005, but
296 * certainly is better then the bug used here before. 552 * certainly is better then the bug used here before.
297 * see http://burtleburtle.net/bob/hash/doobs.html 553 * see http://burtleburtle.net/bob/hash/doobs.html
304 } 560 }
305 561
306 hash += hash << 3; 562 hash += hash << 3;
307 hash ^= hash >> 11; 563 hash ^= hash >> 11;
308 hash += hash << 15; 564 hash += hash << 15;
565#else
566 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
567 // it is about twice as fast as the one-at-a-time one,
568 // with good distribution.
569 // FNV-1a is faster on many cpus because the multiplication
570 // runs concurrent with the looping logic.
571 uint32_t hash = 2166136261;
572
573 while (*s)
574 hash = (hash ^ *s++) * 16777619;
575#endif
309 576
310 return hash; 577 return hash;
311 } 578 }
312}; 579};
313 580
317 { 584 {
318 return !strcmp (a, b); 585 return !strcmp (a, b);
319 } 586 }
320}; 587};
321 588
589// Mostly the same as std::vector, but insert/erase can reorder
590// the elements, making append(=insert)/remove O(1) instead of O(n).
591//
592// NOTE: only some forms of erase are available
322template<class T> 593template<class T>
323struct unordered_vector : std::vector<T, slice_allocator<T> > 594struct unordered_vector : std::vector<T, slice_allocator<T> >
324{ 595{
325 typedef typename unordered_vector::iterator iterator; 596 typedef typename unordered_vector::iterator iterator;
326 597
336 { 607 {
337 erase ((unsigned int )(i - this->begin ())); 608 erase ((unsigned int )(i - this->begin ()));
338 } 609 }
339}; 610};
340 611
341template<class T, int T::* index> 612// This container blends advantages of linked lists
613// (efficiency) with vectors (random access) by
614// by using an unordered vector and storing the vector
615// index inside the object.
616//
617// + memory-efficient on most 64 bit archs
618// + O(1) insert/remove
619// + free unique (but varying) id for inserted objects
620// + cache-friendly iteration
621// - only works for pointers to structs
622//
623// NOTE: only some forms of erase/insert are available
624typedef int object_vector_index;
625
626template<class T, object_vector_index T::*indexmember>
342struct object_vector : std::vector<T *, slice_allocator<T *> > 627struct object_vector : std::vector<T *, slice_allocator<T *> >
343{ 628{
629 typedef typename object_vector::iterator iterator;
630
631 bool contains (const T *obj) const
632 {
633 return obj->*indexmember;
634 }
635
636 iterator find (const T *obj)
637 {
638 return obj->*indexmember
639 ? this->begin () + obj->*indexmember - 1
640 : this->end ();
641 }
642
643 void push_back (T *obj)
644 {
645 std::vector<T *, slice_allocator<T *> >::push_back (obj);
646 obj->*indexmember = this->size ();
647 }
648
344 void insert (T *obj) 649 void insert (T *obj)
345 { 650 {
346 assert (!(obj->*index));
347 push_back (obj); 651 push_back (obj);
348 obj->*index = this->size ();
349 } 652 }
350 653
351 void insert (T &obj) 654 void insert (T &obj)
352 { 655 {
353 insert (&obj); 656 insert (&obj);
354 } 657 }
355 658
356 void erase (T *obj) 659 void erase (T *obj)
357 { 660 {
358 assert (obj->*index);
359 int pos = obj->*index; 661 unsigned int pos = obj->*indexmember;
360 obj->*index = 0; 662 obj->*indexmember = 0;
361 663
362 if (pos < this->size ()) 664 if (pos < this->size ())
363 { 665 {
364 (*this)[pos - 1] = (*this)[this->size () - 1]; 666 (*this)[pos - 1] = (*this)[this->size () - 1];
365 (*this)[pos - 1]->*index = pos; 667 (*this)[pos - 1]->*indexmember = pos;
366 } 668 }
367 669
368 this->pop_back (); 670 this->pop_back ();
369 } 671 }
370 672
371 void erase (T &obj) 673 void erase (T &obj)
372 { 674 {
373 errase (&obj); 675 erase (&obj);
374 } 676 }
375}; 677};
376 678
377// basically does what strncpy should do, but appends "..." to strings exceeding length 679// basically does what strncpy should do, but appends "..." to strings exceeding length
378void assign (char *dst, const char *src, int maxlen); 680void assign (char *dst, const char *src, int maxlen);
384 assign ((char *)&dst, src, N); 686 assign ((char *)&dst, src, N);
385} 687}
386 688
387typedef double tstamp; 689typedef double tstamp;
388 690
389// return current time as timestampe 691// return current time as timestamp
390tstamp now (); 692tstamp now ();
391 693
392int similar_direction (int a, int b); 694int similar_direction (int a, int b);
393 695
696// like sprintf, but returns a "static" buffer
697const char *format (const char *format, ...);
698
699/////////////////////////////////////////////////////////////////////////////
700// threads, very very thin wrappers around pthreads
701
702struct thread
703{
704 pthread_t id;
705
706 void start (void *(*start_routine)(void *), void *arg = 0);
707
708 void cancel ()
709 {
710 pthread_cancel (id);
711 }
712
713 void *join ()
714 {
715 void *ret;
716
717 if (pthread_join (id, &ret))
718 cleanup ("pthread_join failed", 1);
719
720 return ret;
721 }
722};
723
724// note that mutexes are not classes
725typedef pthread_mutex_t smutex;
726
727#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
728 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
729#else
730 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
394#endif 731#endif
395 732
733#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
734#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
735#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
736
737typedef pthread_cond_t scond;
738
739#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
740#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
741#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
742#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
743
744#endif
745

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines