ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.36 by root, Thu Jan 25 03:54:45 2007 UTC vs.
Revision 1.94 by root, Sun Nov 8 16:13:45 2009 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#include <compiler.h>
5 27
6#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#else 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define is_constant(c) 0 31
10#endif 32#include <pthread.h>
11 33
12#include <cstddef> 34#include <cstddef>
13#include <cmath> 35#include <cmath>
14#include <new> 36#include <new>
15#include <vector> 37#include <vector>
17#include <glib.h> 39#include <glib.h>
18 40
19#include <shstr.h> 41#include <shstr.h>
20#include <traits.h> 42#include <traits.h>
21 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
24 59
25// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 61// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 63// (note: works great for pointers)
29// most ugly macro I ever wrote 64// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 66
32// in range including end 67// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 68#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 70
36// in range excluding end 71// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 74
75void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 76void fork_abort (const char *msg);
41 77
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
49 89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99
100// sign0 returns -1, 0 or +1
101template<typename T>
102static inline T sign0 (T v) { return v ? sign (v) : 0; }
103
104// div* only work correctly for div > 0
105// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
106template<typename T> static inline T div (T val, T div)
107{
108 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
109}
110// div, round-up
111template<typename T> static inline T div_ru (T val, T div)
112{
113 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
114}
115// div, round-down
116template<typename T> static inline T div_rd (T val, T div)
117{
118 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
119}
120
121// lerp* only work correctly for min_in < max_in
122// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
123template<typename T>
124static inline T
125lerp (T val, T min_in, T max_in, T min_out, T max_out)
126{
127 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
128}
129
130// lerp, round-down
131template<typename T>
132static inline T
133lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
134{
135 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
136}
137
138// lerp, round-up
139template<typename T>
140static inline T
141lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
142{
143 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
144}
145
146// lots of stuff taken from FXT
147
148/* Rotate right. This is used in various places for checksumming */
149//TODO: that sucks, use a better checksum algo
150static inline uint32_t
151rotate_right (uint32_t c, uint32_t count = 1)
152{
153 return (c << (32 - count)) | (c >> count);
154}
155
156static inline uint32_t
157rotate_left (uint32_t c, uint32_t count = 1)
158{
159 return (c >> (32 - count)) | (c << count);
160}
161
162// Return abs(a-b)
163// Both a and b must not have the most significant bit set
164static inline uint32_t
165upos_abs_diff (uint32_t a, uint32_t b)
166{
167 long d1 = b - a;
168 long d2 = (d1 & (d1 >> 31)) << 1;
169
170 return d1 - d2; // == (b - d) - (a + d);
171}
172
173// Both a and b must not have the most significant bit set
174static inline uint32_t
175upos_min (uint32_t a, uint32_t b)
176{
177 int32_t d = b - a;
178 d &= d >> 31;
179 return a + d;
180}
181
182// Both a and b must not have the most significant bit set
183static inline uint32_t
184upos_max (uint32_t a, uint32_t b)
185{
186 int32_t d = b - a;
187 d &= d >> 31;
188 return b - d;
189}
190
50// this is much faster than crossfires original algorithm 191// this is much faster than crossfire's original algorithm
51// on modern cpus 192// on modern cpus
52inline int 193inline int
53isqrt (int n) 194isqrt (int n)
54{ 195{
55 return (int)sqrtf ((float)n); 196 return (int)sqrtf ((float)n);
197}
198
199// this is kind of like the ^^ operator, if it would exist, without sequence point.
200// more handy than it looks like, due to the implicit !! done on its arguments
201inline bool
202logical_xor (bool a, bool b)
203{
204 return a != b;
205}
206
207inline bool
208logical_implies (bool a, bool b)
209{
210 return a <= b;
56} 211}
57 212
58// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 213// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
59#if 0 214#if 0
60// and has a max. error of 6 in the range -100..+100. 215// and has a max. error of 6 in the range -100..+100.
85absdir (int d) 240absdir (int d)
86{ 241{
87 return ((d - 1) & 7) + 1; 242 return ((d - 1) & 7) + 1;
88} 243}
89 244
245extern ssize_t slice_alloc; // statistics
246
247void *salloc_ (int n) throw (std::bad_alloc);
248void *salloc_ (int n, void *src) throw (std::bad_alloc);
249
250// strictly the same as g_slice_alloc, but never returns 0
251template<typename T>
252inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
253
254// also copies src into the new area, like "memdup"
255// if src is 0, clears the memory
256template<typename T>
257inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
258
259// clears the memory
260template<typename T>
261inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
262
263// for symmetry
264template<typename T>
265inline void sfree (T *ptr, int n = 1) throw ()
266{
267 if (expect_true (ptr))
268 {
269 slice_alloc -= n * sizeof (T);
270 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
271 g_slice_free1 (n * sizeof (T), (void *)ptr);
272 assert (slice_alloc >= 0);//D
273 }
274}
275
276// nulls the pointer
277template<typename T>
278inline void sfree0 (T *&ptr, int n = 1) throw ()
279{
280 sfree<T> (ptr, n);
281 ptr = 0;
282}
283
90// makes dynamically allocated objects zero-initialised 284// makes dynamically allocated objects zero-initialised
91struct zero_initialised 285struct zero_initialised
92{ 286{
93 void *operator new (size_t s, void *p) 287 void *operator new (size_t s, void *p)
94 { 288 {
96 return p; 290 return p;
97 } 291 }
98 292
99 void *operator new (size_t s) 293 void *operator new (size_t s)
100 { 294 {
101 return g_slice_alloc0 (s); 295 return salloc0<char> (s);
102 } 296 }
103 297
104 void *operator new[] (size_t s) 298 void *operator new[] (size_t s)
105 { 299 {
106 return g_slice_alloc0 (s); 300 return salloc0<char> (s);
107 } 301 }
108 302
109 void operator delete (void *p, size_t s) 303 void operator delete (void *p, size_t s)
110 { 304 {
111 g_slice_free1 (s, p); 305 sfree ((char *)p, s);
112 } 306 }
113 307
114 void operator delete[] (void *p, size_t s) 308 void operator delete[] (void *p, size_t s)
115 { 309 {
116 g_slice_free1 (s, p); 310 sfree ((char *)p, s);
117 } 311 }
118}; 312};
119 313
120void *salloc_ (int n) throw (std::bad_alloc); 314// makes dynamically allocated objects zero-initialised
121void *salloc_ (int n, void *src) throw (std::bad_alloc); 315struct slice_allocated
122
123// strictly the same as g_slice_alloc, but never returns 0
124template<typename T>
125inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
126
127// also copies src into the new area, like "memdup"
128// if src is 0, clears the memory
129template<typename T>
130inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
131
132// clears the memory
133template<typename T>
134inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
135
136// for symmetry
137template<typename T>
138inline void sfree (T *ptr, int n = 1) throw ()
139{ 316{
140#ifdef PREFER_MALLOC 317 void *operator new (size_t s, void *p)
141 free (ptr); 318 {
142#else 319 return p;
143 g_slice_free1 (n * sizeof (T), (void *)ptr); 320 }
144#endif 321
145} 322 void *operator new (size_t s)
323 {
324 return salloc<char> (s);
325 }
326
327 void *operator new[] (size_t s)
328 {
329 return salloc<char> (s);
330 }
331
332 void operator delete (void *p, size_t s)
333 {
334 sfree ((char *)p, s);
335 }
336
337 void operator delete[] (void *p, size_t s)
338 {
339 sfree ((char *)p, s);
340 }
341};
146 342
147// a STL-compatible allocator that uses g_slice 343// a STL-compatible allocator that uses g_slice
148// boy, this is verbose 344// boy, this is verbose
149template<typename Tp> 345template<typename Tp>
150struct slice_allocator 346struct slice_allocator
162 { 358 {
163 typedef slice_allocator<U> other; 359 typedef slice_allocator<U> other;
164 }; 360 };
165 361
166 slice_allocator () throw () { } 362 slice_allocator () throw () { }
167 slice_allocator (const slice_allocator &o) throw () { } 363 slice_allocator (const slice_allocator &) throw () { }
168 template<typename Tp2> 364 template<typename Tp2>
169 slice_allocator (const slice_allocator<Tp2> &) throw () { } 365 slice_allocator (const slice_allocator<Tp2> &) throw () { }
170 366
171 ~slice_allocator () { } 367 ~slice_allocator () { }
172 368
181 void deallocate (pointer p, size_type n) 377 void deallocate (pointer p, size_type n)
182 { 378 {
183 sfree<Tp> (p, n); 379 sfree<Tp> (p, n);
184 } 380 }
185 381
186 size_type max_size ()const throw () 382 size_type max_size () const throw ()
187 { 383 {
188 return size_t (-1) / sizeof (Tp); 384 return size_t (-1) / sizeof (Tp);
189 } 385 }
190 386
191 void construct (pointer p, const Tp &val) 387 void construct (pointer p, const Tp &val)
202// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 398// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
203// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 399// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
204// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 400// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
205struct tausworthe_random_generator 401struct tausworthe_random_generator
206{ 402{
207 // generator
208 uint32_t state [4]; 403 uint32_t state [4];
209 404
210 void operator =(const tausworthe_random_generator &src) 405 void operator =(const tausworthe_random_generator &src)
211 { 406 {
212 state [0] = src.state [0]; 407 state [0] = src.state [0];
215 state [3] = src.state [3]; 410 state [3] = src.state [3];
216 } 411 }
217 412
218 void seed (uint32_t seed); 413 void seed (uint32_t seed);
219 uint32_t next (); 414 uint32_t next ();
415};
220 416
221 // uniform distribution 417// Xorshift RNGs, George Marsaglia
418// http://www.jstatsoft.org/v08/i14/paper
419// this one is about 40% faster than the tausworthe one above (i.e. not much),
420// despite the inlining, and has the issue of only creating 2**32-1 numbers.
421// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
422struct xorshift_random_generator
423{
424 uint32_t x, y;
425
426 void operator =(const xorshift_random_generator &src)
427 {
428 x = src.x;
429 y = src.y;
430 }
431
432 void seed (uint32_t seed)
433 {
434 x = seed;
435 y = seed * 69069U;
436 }
437
438 uint32_t next ()
439 {
440 uint32_t t = x ^ (x << 10);
441 x = y;
442 y = y ^ (y >> 13) ^ t ^ (t >> 10);
443 return y;
444 }
445};
446
447template<class generator>
448struct random_number_generator : generator
449{
450 // uniform distribution, 0 .. max (0, num - 1)
222 uint32_t operator ()(uint32_t r_max) 451 uint32_t operator ()(uint32_t num)
223 { 452 {
224 return is_constant (r_max) 453 return !is_constant (num) ? get_range (num) // non-constant
225 ? this->next () % r_max 454 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
226 : get_range (r_max); 455 : this->next () & (num - 1); // constant, power-of-two
227 } 456 }
228 457
229 // return a number within (min .. max) 458 // return a number within (min .. max)
230 int operator () (int r_min, int r_max) 459 int operator () (int r_min, int r_max)
231 { 460 {
232 return is_constant (r_min) && is_constant (r_max) 461 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
233 ? r_min + (*this) (max (r_max - r_min + 1, 1)) 462 ? r_min + operator ()(r_max - r_min + 1)
234 : get_range (r_min, r_max); 463 : get_range (r_min, r_max);
235 } 464 }
236 465
237 double operator ()() 466 double operator ()()
238 { 467 {
242protected: 471protected:
243 uint32_t get_range (uint32_t r_max); 472 uint32_t get_range (uint32_t r_max);
244 int get_range (int r_min, int r_max); 473 int get_range (int r_min, int r_max);
245}; 474};
246 475
247typedef tausworthe_random_generator rand_gen; 476typedef random_number_generator<tausworthe_random_generator> rand_gen;
248 477
249extern rand_gen rndm; 478extern rand_gen rndm, rmg_rndm;
479
480INTERFACE_CLASS (attachable)
481struct refcnt_base
482{
483 typedef int refcnt_t;
484 mutable refcnt_t ACC (RW, refcnt);
485
486 MTH void refcnt_inc () const { ++refcnt; }
487 MTH void refcnt_dec () const { --refcnt; }
488
489 refcnt_base () : refcnt (0) { }
490};
491
492// to avoid branches with more advanced compilers
493extern refcnt_base::refcnt_t refcnt_dummy;
250 494
251template<class T> 495template<class T>
252struct refptr 496struct refptr
253{ 497{
498 // p if not null
499 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
500
501 void refcnt_dec ()
502 {
503 if (!is_constant (p))
504 --*refcnt_ref ();
505 else if (p)
506 --p->refcnt;
507 }
508
509 void refcnt_inc ()
510 {
511 if (!is_constant (p))
512 ++*refcnt_ref ();
513 else if (p)
514 ++p->refcnt;
515 }
516
254 T *p; 517 T *p;
255 518
256 refptr () : p(0) { } 519 refptr () : p(0) { }
257 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 520 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
258 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 521 refptr (T *p) : p(p) { refcnt_inc (); }
259 ~refptr () { if (p) p->refcnt_dec (); } 522 ~refptr () { refcnt_dec (); }
260 523
261 const refptr<T> &operator =(T *o) 524 const refptr<T> &operator =(T *o)
262 { 525 {
526 // if decrementing ever destroys we need to reverse the order here
263 if (p) p->refcnt_dec (); 527 refcnt_dec ();
264 p = o; 528 p = o;
265 if (p) p->refcnt_inc (); 529 refcnt_inc ();
266
267 return *this; 530 return *this;
268 } 531 }
269 532
270 const refptr<T> &operator =(const refptr<T> o) 533 const refptr<T> &operator =(const refptr<T> &o)
271 { 534 {
272 *this = o.p; 535 *this = o.p;
273 return *this; 536 return *this;
274 } 537 }
275 538
276 T &operator * () const { return *p; } 539 T &operator * () const { return *p; }
277 T *operator ->() const { return p; } 540 T *operator ->() const { return p; }
278 541
279 operator T *() const { return p; } 542 operator T *() const { return p; }
280}; 543};
281 544
282typedef refptr<maptile> maptile_ptr; 545typedef refptr<maptile> maptile_ptr;
287 550
288struct str_hash 551struct str_hash
289{ 552{
290 std::size_t operator ()(const char *s) const 553 std::size_t operator ()(const char *s) const
291 { 554 {
292 unsigned long hash = 0; 555#if 0
556 uint32_t hash = 0;
293 557
294 /* use the one-at-a-time hash function, which supposedly is 558 /* use the one-at-a-time hash function, which supposedly is
295 * better than the djb2-like one used by perl5.005, but 559 * better than the djb2-like one used by perl5.005, but
296 * certainly is better then the bug used here before. 560 * certainly is better then the bug used here before.
297 * see http://burtleburtle.net/bob/hash/doobs.html 561 * see http://burtleburtle.net/bob/hash/doobs.html
304 } 568 }
305 569
306 hash += hash << 3; 570 hash += hash << 3;
307 hash ^= hash >> 11; 571 hash ^= hash >> 11;
308 hash += hash << 15; 572 hash += hash << 15;
573#else
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrent with the looping logic.
579 uint32_t hash = 2166136261;
580
581 while (*s)
582 hash = (hash ^ *s++) * 16777619;
583#endif
309 584
310 return hash; 585 return hash;
311 } 586 }
312}; 587};
313 588
317 { 592 {
318 return !strcmp (a, b); 593 return !strcmp (a, b);
319 } 594 }
320}; 595};
321 596
597// Mostly the same as std::vector, but insert/erase can reorder
598// the elements, making append(=insert)/remove O(1) instead of O(n).
599//
600// NOTE: only some forms of erase are available
322template<class T> 601template<class T>
323struct unordered_vector : std::vector<T, slice_allocator<T> > 602struct unordered_vector : std::vector<T, slice_allocator<T> >
324{ 603{
325 typedef typename unordered_vector::iterator iterator; 604 typedef typename unordered_vector::iterator iterator;
326 605
336 { 615 {
337 erase ((unsigned int )(i - this->begin ())); 616 erase ((unsigned int )(i - this->begin ()));
338 } 617 }
339}; 618};
340 619
341template<class T, int T::* index> 620// This container blends advantages of linked lists
621// (efficiency) with vectors (random access) by
622// by using an unordered vector and storing the vector
623// index inside the object.
624//
625// + memory-efficient on most 64 bit archs
626// + O(1) insert/remove
627// + free unique (but varying) id for inserted objects
628// + cache-friendly iteration
629// - only works for pointers to structs
630//
631// NOTE: only some forms of erase/insert are available
632typedef int object_vector_index;
633
634template<class T, object_vector_index T::*indexmember>
342struct object_vector : std::vector<T *, slice_allocator<T *> > 635struct object_vector : std::vector<T *, slice_allocator<T *> >
343{ 636{
637 typedef typename object_vector::iterator iterator;
638
639 bool contains (const T *obj) const
640 {
641 return obj->*indexmember;
642 }
643
644 iterator find (const T *obj)
645 {
646 return obj->*indexmember
647 ? this->begin () + obj->*indexmember - 1
648 : this->end ();
649 }
650
651 void push_back (T *obj)
652 {
653 std::vector<T *, slice_allocator<T *> >::push_back (obj);
654 obj->*indexmember = this->size ();
655 }
656
344 void insert (T *obj) 657 void insert (T *obj)
345 { 658 {
346 assert (!(obj->*index));
347 push_back (obj); 659 push_back (obj);
348 obj->*index = this->size ();
349 } 660 }
350 661
351 void insert (T &obj) 662 void insert (T &obj)
352 { 663 {
353 insert (&obj); 664 insert (&obj);
354 } 665 }
355 666
356 void erase (T *obj) 667 void erase (T *obj)
357 { 668 {
358 assert (obj->*index);
359 int pos = obj->*index; 669 unsigned int pos = obj->*indexmember;
360 obj->*index = 0; 670 obj->*indexmember = 0;
361 671
362 if (pos < this->size ()) 672 if (pos < this->size ())
363 { 673 {
364 (*this)[pos - 1] = (*this)[this->size () - 1]; 674 (*this)[pos - 1] = (*this)[this->size () - 1];
365 (*this)[pos - 1]->*index = pos; 675 (*this)[pos - 1]->*indexmember = pos;
366 } 676 }
367 677
368 this->pop_back (); 678 this->pop_back ();
369 } 679 }
370 680
371 void erase (T &obj) 681 void erase (T &obj)
372 { 682 {
373 errase (&obj); 683 erase (&obj);
374 } 684 }
375}; 685};
376 686
377// basically does what strncpy should do, but appends "..." to strings exceeding length 687// basically does what strncpy should do, but appends "..." to strings exceeding length
688// returns the number of bytes actually used (including \0)
378void assign (char *dst, const char *src, int maxlen); 689int assign (char *dst, const char *src, int maxsize);
379 690
380// type-safe version of assign 691// type-safe version of assign
381template<int N> 692template<int N>
382inline void assign (char (&dst)[N], const char *src) 693inline int assign (char (&dst)[N], const char *src)
383{ 694{
384 assign ((char *)&dst, src, N); 695 return assign ((char *)&dst, src, N);
385} 696}
386 697
387typedef double tstamp; 698typedef double tstamp;
388 699
389// return current time as timestampe 700// return current time as timestamp
390tstamp now (); 701tstamp now ();
391 702
392int similar_direction (int a, int b); 703int similar_direction (int a, int b);
393 704
705// like v?sprintf, but returns a "static" buffer
706char *vformat (const char *format, va_list ap);
707char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
708
709// safety-check player input which will become object->msg
710bool msg_is_safe (const char *msg);
711
712/////////////////////////////////////////////////////////////////////////////
713// threads, very very thin wrappers around pthreads
714
715struct thread
716{
717 pthread_t id;
718
719 void start (void *(*start_routine)(void *), void *arg = 0);
720
721 void cancel ()
722 {
723 pthread_cancel (id);
724 }
725
726 void *join ()
727 {
728 void *ret;
729
730 if (pthread_join (id, &ret))
731 cleanup ("pthread_join failed", 1);
732
733 return ret;
734 }
735};
736
737// note that mutexes are not classes
738typedef pthread_mutex_t smutex;
739
740#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
741 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
742#else
743 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
394#endif 744#endif
395 745
746#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
747#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
748#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
749
750typedef pthread_cond_t scond;
751
752#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
753#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
754#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
755#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
756
757#endif
758

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines