ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.36 by root, Thu Jan 25 03:54:45 2007 UTC vs.
Revision 1.97 by root, Fri Mar 26 01:04:44 2010 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4//#define PREFER_MALLOC 26#include <compiler.h>
5 27
6#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#else 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define is_constant(c) 0 31
10#endif 32#include <pthread.h>
11 33
12#include <cstddef> 34#include <cstddef>
13#include <cmath> 35#include <cmath>
14#include <new> 36#include <new>
15#include <vector> 37#include <vector>
17#include <glib.h> 39#include <glib.h>
18 40
19#include <shstr.h> 41#include <shstr.h>
20#include <traits.h> 42#include <traits.h>
21 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
24 59
25// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 61// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 63// (note: works great for pointers)
29// most ugly macro I ever wrote 64// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 66
32// in range including end 67// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 68#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 70
36// in range excluding end 71// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 74
75void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 76void fork_abort (const char *msg);
41 77
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
49 89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99
100// sign0 returns -1, 0 or +1
101template<typename T>
102static inline T sign0 (T v) { return v ? sign (v) : 0; }
103
104// div* only work correctly for div > 0
105// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
106template<typename T> static inline T div (T val, T div)
107{
108 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
109}
110// div, round-up
111template<typename T> static inline T div_ru (T val, T div)
112{
113 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
114}
115// div, round-down
116template<typename T> static inline T div_rd (T val, T div)
117{
118 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
119}
120
121// lerp* only work correctly for min_in < max_in
122// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
123template<typename T>
124static inline T
125lerp (T val, T min_in, T max_in, T min_out, T max_out)
126{
127 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
128}
129
130// lerp, round-down
131template<typename T>
132static inline T
133lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
134{
135 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
136}
137
138// lerp, round-up
139template<typename T>
140static inline T
141lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
142{
143 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
144}
145
146// lots of stuff taken from FXT
147
148/* Rotate right. This is used in various places for checksumming */
149//TODO: that sucks, use a better checksum algo
150static inline uint32_t
151rotate_right (uint32_t c, uint32_t count = 1)
152{
153 return (c << (32 - count)) | (c >> count);
154}
155
156static inline uint32_t
157rotate_left (uint32_t c, uint32_t count = 1)
158{
159 return (c >> (32 - count)) | (c << count);
160}
161
162// Return abs(a-b)
163// Both a and b must not have the most significant bit set
164static inline uint32_t
165upos_abs_diff (uint32_t a, uint32_t b)
166{
167 long d1 = b - a;
168 long d2 = (d1 & (d1 >> 31)) << 1;
169
170 return d1 - d2; // == (b - d) - (a + d);
171}
172
173// Both a and b must not have the most significant bit set
174static inline uint32_t
175upos_min (uint32_t a, uint32_t b)
176{
177 int32_t d = b - a;
178 d &= d >> 31;
179 return a + d;
180}
181
182// Both a and b must not have the most significant bit set
183static inline uint32_t
184upos_max (uint32_t a, uint32_t b)
185{
186 int32_t d = b - a;
187 d &= d >> 31;
188 return b - d;
189}
190
50// this is much faster than crossfires original algorithm 191// this is much faster than crossfire's original algorithm
51// on modern cpus 192// on modern cpus
52inline int 193inline int
53isqrt (int n) 194isqrt (int n)
54{ 195{
55 return (int)sqrtf ((float)n); 196 return (int)sqrtf ((float)n);
197}
198
199// this is kind of like the ^^ operator, if it would exist, without sequence point.
200// more handy than it looks like, due to the implicit !! done on its arguments
201inline bool
202logical_xor (bool a, bool b)
203{
204 return a != b;
205}
206
207inline bool
208logical_implies (bool a, bool b)
209{
210 return a <= b;
56} 211}
57 212
58// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 213// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
59#if 0 214#if 0
60// and has a max. error of 6 in the range -100..+100. 215// and has a max. error of 6 in the range -100..+100.
85absdir (int d) 240absdir (int d)
86{ 241{
87 return ((d - 1) & 7) + 1; 242 return ((d - 1) & 7) + 1;
88} 243}
89 244
245// avoid ctz name because netbsd or freebsd spams it's namespace with it
246#if GCC_VERSION(3,4)
247static inline int least_significant_bit (uint32_t x)
248{
249 return __builtin_ctz (x);
250}
251#else
252int least_significant_bit (uint32_t x);
253#endif
254
255#define for_all_bits_sparse_32(mask, idxvar) \
256 for (uint32_t idxvar, mask_ = mask; \
257 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
258
259extern ssize_t slice_alloc; // statistics
260
261void *salloc_ (int n) throw (std::bad_alloc);
262void *salloc_ (int n, void *src) throw (std::bad_alloc);
263
264// strictly the same as g_slice_alloc, but never returns 0
265template<typename T>
266inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
267
268// also copies src into the new area, like "memdup"
269// if src is 0, clears the memory
270template<typename T>
271inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
272
273// clears the memory
274template<typename T>
275inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
276
277// for symmetry
278template<typename T>
279inline void sfree (T *ptr, int n = 1) throw ()
280{
281 if (expect_true (ptr))
282 {
283 slice_alloc -= n * sizeof (T);
284 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
285 g_slice_free1 (n * sizeof (T), (void *)ptr);
286 assert (slice_alloc >= 0);//D
287 }
288}
289
290// nulls the pointer
291template<typename T>
292inline void sfree0 (T *&ptr, int n = 1) throw ()
293{
294 sfree<T> (ptr, n);
295 ptr = 0;
296}
297
90// makes dynamically allocated objects zero-initialised 298// makes dynamically allocated objects zero-initialised
91struct zero_initialised 299struct zero_initialised
92{ 300{
93 void *operator new (size_t s, void *p) 301 void *operator new (size_t s, void *p)
94 { 302 {
96 return p; 304 return p;
97 } 305 }
98 306
99 void *operator new (size_t s) 307 void *operator new (size_t s)
100 { 308 {
101 return g_slice_alloc0 (s); 309 return salloc0<char> (s);
102 } 310 }
103 311
104 void *operator new[] (size_t s) 312 void *operator new[] (size_t s)
105 { 313 {
106 return g_slice_alloc0 (s); 314 return salloc0<char> (s);
107 } 315 }
108 316
109 void operator delete (void *p, size_t s) 317 void operator delete (void *p, size_t s)
110 { 318 {
111 g_slice_free1 (s, p); 319 sfree ((char *)p, s);
112 } 320 }
113 321
114 void operator delete[] (void *p, size_t s) 322 void operator delete[] (void *p, size_t s)
115 { 323 {
116 g_slice_free1 (s, p); 324 sfree ((char *)p, s);
117 } 325 }
118}; 326};
119 327
120void *salloc_ (int n) throw (std::bad_alloc); 328// makes dynamically allocated objects zero-initialised
121void *salloc_ (int n, void *src) throw (std::bad_alloc); 329struct slice_allocated
122
123// strictly the same as g_slice_alloc, but never returns 0
124template<typename T>
125inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
126
127// also copies src into the new area, like "memdup"
128// if src is 0, clears the memory
129template<typename T>
130inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
131
132// clears the memory
133template<typename T>
134inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
135
136// for symmetry
137template<typename T>
138inline void sfree (T *ptr, int n = 1) throw ()
139{ 330{
140#ifdef PREFER_MALLOC 331 void *operator new (size_t s, void *p)
141 free (ptr); 332 {
142#else 333 return p;
143 g_slice_free1 (n * sizeof (T), (void *)ptr); 334 }
144#endif 335
145} 336 void *operator new (size_t s)
337 {
338 return salloc<char> (s);
339 }
340
341 void *operator new[] (size_t s)
342 {
343 return salloc<char> (s);
344 }
345
346 void operator delete (void *p, size_t s)
347 {
348 sfree ((char *)p, s);
349 }
350
351 void operator delete[] (void *p, size_t s)
352 {
353 sfree ((char *)p, s);
354 }
355};
146 356
147// a STL-compatible allocator that uses g_slice 357// a STL-compatible allocator that uses g_slice
148// boy, this is verbose 358// boy, this is verbose
149template<typename Tp> 359template<typename Tp>
150struct slice_allocator 360struct slice_allocator
162 { 372 {
163 typedef slice_allocator<U> other; 373 typedef slice_allocator<U> other;
164 }; 374 };
165 375
166 slice_allocator () throw () { } 376 slice_allocator () throw () { }
167 slice_allocator (const slice_allocator &o) throw () { } 377 slice_allocator (const slice_allocator &) throw () { }
168 template<typename Tp2> 378 template<typename Tp2>
169 slice_allocator (const slice_allocator<Tp2> &) throw () { } 379 slice_allocator (const slice_allocator<Tp2> &) throw () { }
170 380
171 ~slice_allocator () { } 381 ~slice_allocator () { }
172 382
181 void deallocate (pointer p, size_type n) 391 void deallocate (pointer p, size_type n)
182 { 392 {
183 sfree<Tp> (p, n); 393 sfree<Tp> (p, n);
184 } 394 }
185 395
186 size_type max_size ()const throw () 396 size_type max_size () const throw ()
187 { 397 {
188 return size_t (-1) / sizeof (Tp); 398 return size_t (-1) / sizeof (Tp);
189 } 399 }
190 400
191 void construct (pointer p, const Tp &val) 401 void construct (pointer p, const Tp &val)
202// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 412// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
203// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 413// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
204// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 414// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
205struct tausworthe_random_generator 415struct tausworthe_random_generator
206{ 416{
207 // generator
208 uint32_t state [4]; 417 uint32_t state [4];
209 418
210 void operator =(const tausworthe_random_generator &src) 419 void operator =(const tausworthe_random_generator &src)
211 { 420 {
212 state [0] = src.state [0]; 421 state [0] = src.state [0];
215 state [3] = src.state [3]; 424 state [3] = src.state [3];
216 } 425 }
217 426
218 void seed (uint32_t seed); 427 void seed (uint32_t seed);
219 uint32_t next (); 428 uint32_t next ();
429};
220 430
221 // uniform distribution 431// Xorshift RNGs, George Marsaglia
432// http://www.jstatsoft.org/v08/i14/paper
433// this one is about 40% faster than the tausworthe one above (i.e. not much),
434// despite the inlining, and has the issue of only creating 2**32-1 numbers.
435// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
436struct xorshift_random_generator
437{
438 uint32_t x, y;
439
440 void operator =(const xorshift_random_generator &src)
441 {
442 x = src.x;
443 y = src.y;
444 }
445
446 void seed (uint32_t seed)
447 {
448 x = seed;
449 y = seed * 69069U;
450 }
451
452 uint32_t next ()
453 {
454 uint32_t t = x ^ (x << 10);
455 x = y;
456 y = y ^ (y >> 13) ^ t ^ (t >> 10);
457 return y;
458 }
459};
460
461template<class generator>
462struct random_number_generator : generator
463{
464 // uniform distribution, 0 .. max (0, num - 1)
222 uint32_t operator ()(uint32_t r_max) 465 uint32_t operator ()(uint32_t num)
223 { 466 {
224 return is_constant (r_max) 467 return !is_constant (num) ? get_range (num) // non-constant
225 ? this->next () % r_max 468 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
226 : get_range (r_max); 469 : this->next () & (num - 1); // constant, power-of-two
227 } 470 }
228 471
229 // return a number within (min .. max) 472 // return a number within (min .. max)
230 int operator () (int r_min, int r_max) 473 int operator () (int r_min, int r_max)
231 { 474 {
232 return is_constant (r_min) && is_constant (r_max) 475 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
233 ? r_min + (*this) (max (r_max - r_min + 1, 1)) 476 ? r_min + operator ()(r_max - r_min + 1)
234 : get_range (r_min, r_max); 477 : get_range (r_min, r_max);
235 } 478 }
236 479
237 double operator ()() 480 double operator ()()
238 { 481 {
242protected: 485protected:
243 uint32_t get_range (uint32_t r_max); 486 uint32_t get_range (uint32_t r_max);
244 int get_range (int r_min, int r_max); 487 int get_range (int r_min, int r_max);
245}; 488};
246 489
247typedef tausworthe_random_generator rand_gen; 490typedef random_number_generator<tausworthe_random_generator> rand_gen;
248 491
249extern rand_gen rndm; 492extern rand_gen rndm, rmg_rndm;
493
494INTERFACE_CLASS (attachable)
495struct refcnt_base
496{
497 typedef int refcnt_t;
498 mutable refcnt_t ACC (RW, refcnt);
499
500 MTH void refcnt_inc () const { ++refcnt; }
501 MTH void refcnt_dec () const { --refcnt; }
502
503 refcnt_base () : refcnt (0) { }
504};
505
506// to avoid branches with more advanced compilers
507extern refcnt_base::refcnt_t refcnt_dummy;
250 508
251template<class T> 509template<class T>
252struct refptr 510struct refptr
253{ 511{
512 // p if not null
513 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
514
515 void refcnt_dec ()
516 {
517 if (!is_constant (p))
518 --*refcnt_ref ();
519 else if (p)
520 --p->refcnt;
521 }
522
523 void refcnt_inc ()
524 {
525 if (!is_constant (p))
526 ++*refcnt_ref ();
527 else if (p)
528 ++p->refcnt;
529 }
530
254 T *p; 531 T *p;
255 532
256 refptr () : p(0) { } 533 refptr () : p(0) { }
257 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 534 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
258 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 535 refptr (T *p) : p(p) { refcnt_inc (); }
259 ~refptr () { if (p) p->refcnt_dec (); } 536 ~refptr () { refcnt_dec (); }
260 537
261 const refptr<T> &operator =(T *o) 538 const refptr<T> &operator =(T *o)
262 { 539 {
540 // if decrementing ever destroys we need to reverse the order here
263 if (p) p->refcnt_dec (); 541 refcnt_dec ();
264 p = o; 542 p = o;
265 if (p) p->refcnt_inc (); 543 refcnt_inc ();
266
267 return *this; 544 return *this;
268 } 545 }
269 546
270 const refptr<T> &operator =(const refptr<T> o) 547 const refptr<T> &operator =(const refptr<T> &o)
271 { 548 {
272 *this = o.p; 549 *this = o.p;
273 return *this; 550 return *this;
274 } 551 }
275 552
276 T &operator * () const { return *p; } 553 T &operator * () const { return *p; }
277 T *operator ->() const { return p; } 554 T *operator ->() const { return p; }
278 555
279 operator T *() const { return p; } 556 operator T *() const { return p; }
280}; 557};
281 558
282typedef refptr<maptile> maptile_ptr; 559typedef refptr<maptile> maptile_ptr;
283typedef refptr<object> object_ptr; 560typedef refptr<object> object_ptr;
284typedef refptr<archetype> arch_ptr; 561typedef refptr<archetype> arch_ptr;
285typedef refptr<client> client_ptr; 562typedef refptr<client> client_ptr;
286typedef refptr<player> player_ptr; 563typedef refptr<player> player_ptr;
287 564
565#define STRHSH_NULL 2166136261
566
567static inline uint32_t
568strhsh (const char *s)
569{
570 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
571 // it is about twice as fast as the one-at-a-time one,
572 // with good distribution.
573 // FNV-1a is faster on many cpus because the multiplication
574 // runs concurrently with the looping logic.
575 uint32_t hash = STRHSH_NULL;
576
577 while (*s)
578 hash = (hash ^ *s++) * 16777619;
579
580 return hash;
581}
582
583static inline uint32_t
584memhsh (const char *s, size_t len)
585{
586 uint32_t hash = STRHSH_NULL;
587
588 while (len--)
589 hash = (hash ^ *s++) * 16777619;
590
591 return hash;
592}
593
288struct str_hash 594struct str_hash
289{ 595{
290 std::size_t operator ()(const char *s) const 596 std::size_t operator ()(const char *s) const
291 { 597 {
292 unsigned long hash = 0;
293
294 /* use the one-at-a-time hash function, which supposedly is
295 * better than the djb2-like one used by perl5.005, but
296 * certainly is better then the bug used here before.
297 * see http://burtleburtle.net/bob/hash/doobs.html
298 */
299 while (*s)
300 {
301 hash += *s++;
302 hash += hash << 10;
303 hash ^= hash >> 6;
304 }
305
306 hash += hash << 3;
307 hash ^= hash >> 11;
308 hash += hash << 15;
309
310 return hash; 598 return strhsh (s);
599 }
600
601 std::size_t operator ()(const shstr &s) const
602 {
603 return strhsh (s);
311 } 604 }
312}; 605};
313 606
314struct str_equal 607struct str_equal
315{ 608{
317 { 610 {
318 return !strcmp (a, b); 611 return !strcmp (a, b);
319 } 612 }
320}; 613};
321 614
615// Mostly the same as std::vector, but insert/erase can reorder
616// the elements, making append(=insert)/remove O(1) instead of O(n).
617//
618// NOTE: only some forms of erase are available
322template<class T> 619template<class T>
323struct unordered_vector : std::vector<T, slice_allocator<T> > 620struct unordered_vector : std::vector<T, slice_allocator<T> >
324{ 621{
325 typedef typename unordered_vector::iterator iterator; 622 typedef typename unordered_vector::iterator iterator;
326 623
336 { 633 {
337 erase ((unsigned int )(i - this->begin ())); 634 erase ((unsigned int )(i - this->begin ()));
338 } 635 }
339}; 636};
340 637
341template<class T, int T::* index> 638// This container blends advantages of linked lists
639// (efficiency) with vectors (random access) by
640// by using an unordered vector and storing the vector
641// index inside the object.
642//
643// + memory-efficient on most 64 bit archs
644// + O(1) insert/remove
645// + free unique (but varying) id for inserted objects
646// + cache-friendly iteration
647// - only works for pointers to structs
648//
649// NOTE: only some forms of erase/insert are available
650typedef int object_vector_index;
651
652template<class T, object_vector_index T::*indexmember>
342struct object_vector : std::vector<T *, slice_allocator<T *> > 653struct object_vector : std::vector<T *, slice_allocator<T *> >
343{ 654{
655 typedef typename object_vector::iterator iterator;
656
657 bool contains (const T *obj) const
658 {
659 return obj->*indexmember;
660 }
661
662 iterator find (const T *obj)
663 {
664 return obj->*indexmember
665 ? this->begin () + obj->*indexmember - 1
666 : this->end ();
667 }
668
669 void push_back (T *obj)
670 {
671 std::vector<T *, slice_allocator<T *> >::push_back (obj);
672 obj->*indexmember = this->size ();
673 }
674
344 void insert (T *obj) 675 void insert (T *obj)
345 { 676 {
346 assert (!(obj->*index));
347 push_back (obj); 677 push_back (obj);
348 obj->*index = this->size ();
349 } 678 }
350 679
351 void insert (T &obj) 680 void insert (T &obj)
352 { 681 {
353 insert (&obj); 682 insert (&obj);
354 } 683 }
355 684
356 void erase (T *obj) 685 void erase (T *obj)
357 { 686 {
358 assert (obj->*index);
359 int pos = obj->*index; 687 unsigned int pos = obj->*indexmember;
360 obj->*index = 0; 688 obj->*indexmember = 0;
361 689
362 if (pos < this->size ()) 690 if (pos < this->size ())
363 { 691 {
364 (*this)[pos - 1] = (*this)[this->size () - 1]; 692 (*this)[pos - 1] = (*this)[this->size () - 1];
365 (*this)[pos - 1]->*index = pos; 693 (*this)[pos - 1]->*indexmember = pos;
366 } 694 }
367 695
368 this->pop_back (); 696 this->pop_back ();
369 } 697 }
370 698
371 void erase (T &obj) 699 void erase (T &obj)
372 { 700 {
373 errase (&obj); 701 erase (&obj);
374 } 702 }
375}; 703};
376 704
377// basically does what strncpy should do, but appends "..." to strings exceeding length 705// basically does what strncpy should do, but appends "..." to strings exceeding length
706// returns the number of bytes actually used (including \0)
378void assign (char *dst, const char *src, int maxlen); 707int assign (char *dst, const char *src, int maxsize);
379 708
380// type-safe version of assign 709// type-safe version of assign
381template<int N> 710template<int N>
382inline void assign (char (&dst)[N], const char *src) 711inline int assign (char (&dst)[N], const char *src)
383{ 712{
384 assign ((char *)&dst, src, N); 713 return assign ((char *)&dst, src, N);
385} 714}
386 715
387typedef double tstamp; 716typedef double tstamp;
388 717
389// return current time as timestampe 718// return current time as timestamp
390tstamp now (); 719tstamp now ();
391 720
392int similar_direction (int a, int b); 721int similar_direction (int a, int b);
393 722
723// like v?sprintf, but returns a "static" buffer
724char *vformat (const char *format, va_list ap);
725char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
726
727// safety-check player input which will become object->msg
728bool msg_is_safe (const char *msg);
729
730/////////////////////////////////////////////////////////////////////////////
731// threads, very very thin wrappers around pthreads
732
733struct thread
734{
735 pthread_t id;
736
737 void start (void *(*start_routine)(void *), void *arg = 0);
738
739 void cancel ()
740 {
741 pthread_cancel (id);
742 }
743
744 void *join ()
745 {
746 void *ret;
747
748 if (pthread_join (id, &ret))
749 cleanup ("pthread_join failed", 1);
750
751 return ret;
752 }
753};
754
755// note that mutexes are not classes
756typedef pthread_mutex_t smutex;
757
758#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
759 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
760#else
761 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
394#endif 762#endif
395 763
764#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
765#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
766#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
767
768typedef pthread_cond_t scond;
769
770#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
771#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
772#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
773#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
774
775#endif
776

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines