ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.38 by root, Thu Feb 15 18:09:34 2007 UTC vs.
Revision 1.88 by root, Tue May 5 04:51:56 2009 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
4//#define PREFER_MALLOC 25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
5 28
6#if __GNUC__ >= 3 29#if __GNUC__ >= 3
7# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33# define noinline __attribute__((__noinline__))
8#else 34#else
9# define is_constant(c) 0 35# define is_constant(c) 0
36# define expect(expr,value) (expr)
37# define prefetch(addr,rw,locality)
38# define noinline
10#endif 39#endif
40
41#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
42# define decltype(x) typeof(x)
43#endif
44
45// put into ifs if you are very sure that the expression
46// is mostly true or mosty false. note that these return
47// booleans, not the expression.
48#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
49#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
50
51#include <pthread.h>
11 52
12#include <cstddef> 53#include <cstddef>
13#include <cmath> 54#include <cmath>
14#include <new> 55#include <new>
15#include <vector> 56#include <vector>
17#include <glib.h> 58#include <glib.h>
18 59
19#include <shstr.h> 60#include <shstr.h>
20#include <traits.h> 61#include <traits.h>
21 62
63#if DEBUG_SALLOC
64# define g_slice_alloc0(s) debug_slice_alloc0(s)
65# define g_slice_alloc(s) debug_slice_alloc(s)
66# define g_slice_free1(s,p) debug_slice_free1(s,p)
67void *g_slice_alloc (unsigned long size);
68void *g_slice_alloc0 (unsigned long size);
69void g_slice_free1 (unsigned long size, void *ptr);
70#elif PREFER_MALLOC
71# define g_slice_alloc0(s) calloc (1, (s))
72# define g_slice_alloc(s) malloc ((s))
73# define g_slice_free1(s,p) free ((p))
74#endif
75
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 76// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define AUTODECL(var,expr) typeof(expr) var = (expr) 77#define auto(var,expr) decltype(expr) var = (expr)
24 78
25// very ugly macro that basicaly declares and initialises a variable 79// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 80// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 81// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 82// (note: works great for pointers)
29// most ugly macro I ever wrote 83// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 84#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 85
32// in range including end 86// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 87#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 88 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 89
36// in range excluding end 90// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 91#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 92 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 93
94void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 95void fork_abort (const char *msg);
41 96
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 97// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 98// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 99template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 100template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 101template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 102
103template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
104template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
105template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
106
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 107template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
108
109template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
110template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
111
112// sign returns -1 or +1
113template<typename T>
114static inline T sign (T v) { return v < 0 ? -1 : +1; }
115// relies on 2c representation
116template<>
117inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
118
119// sign0 returns -1, 0 or +1
120template<typename T>
121static inline T sign0 (T v) { return v ? sign (v) : 0; }
122
123// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129// div, round-up
130template<typename T> static inline T div_ru (T val, T div)
131{
132 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
133}
134// div, round-down
135template<typename T> static inline T div_rd (T val, T div)
136{
137 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
138}
139
140// lerp* only work correctly for min_in < max_in
141// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
142template<typename T>
143static inline T
144lerp (T val, T min_in, T max_in, T min_out, T max_out)
145{
146 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
147}
148
149// lerp, round-down
150template<typename T>
151static inline T
152lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
153{
154 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
155}
156
157// lerp, round-up
158template<typename T>
159static inline T
160lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
161{
162 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
163}
49 164
50// lots of stuff taken from FXT 165// lots of stuff taken from FXT
51 166
52/* Rotate right. This is used in various places for checksumming */ 167/* Rotate right. This is used in various places for checksumming */
53//TODO: that sucks, use a better checksum algo 168//TODO: that sucks, use a better checksum algo
130absdir (int d) 245absdir (int d)
131{ 246{
132 return ((d - 1) & 7) + 1; 247 return ((d - 1) & 7) + 1;
133} 248}
134 249
250extern ssize_t slice_alloc; // statistics
251
252void *salloc_ (int n) throw (std::bad_alloc);
253void *salloc_ (int n, void *src) throw (std::bad_alloc);
254
255// strictly the same as g_slice_alloc, but never returns 0
256template<typename T>
257inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
258
259// also copies src into the new area, like "memdup"
260// if src is 0, clears the memory
261template<typename T>
262inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
263
264// clears the memory
265template<typename T>
266inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
267
268// for symmetry
269template<typename T>
270inline void sfree (T *ptr, int n = 1) throw ()
271{
272 if (expect_true (ptr))
273 {
274 slice_alloc -= n * sizeof (T);
275 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
276 g_slice_free1 (n * sizeof (T), (void *)ptr);
277 assert (slice_alloc >= 0);//D
278 }
279}
280
281// nulls the pointer
282template<typename T>
283inline void sfree0 (T *&ptr, int n = 1) throw ()
284{
285 sfree<T> (ptr, n);
286 ptr = 0;
287}
288
135// makes dynamically allocated objects zero-initialised 289// makes dynamically allocated objects zero-initialised
136struct zero_initialised 290struct zero_initialised
137{ 291{
138 void *operator new (size_t s, void *p) 292 void *operator new (size_t s, void *p)
139 { 293 {
141 return p; 295 return p;
142 } 296 }
143 297
144 void *operator new (size_t s) 298 void *operator new (size_t s)
145 { 299 {
146 return g_slice_alloc0 (s); 300 return salloc0<char> (s);
147 } 301 }
148 302
149 void *operator new[] (size_t s) 303 void *operator new[] (size_t s)
150 { 304 {
151 return g_slice_alloc0 (s); 305 return salloc0<char> (s);
152 } 306 }
153 307
154 void operator delete (void *p, size_t s) 308 void operator delete (void *p, size_t s)
155 { 309 {
156 g_slice_free1 (s, p); 310 sfree ((char *)p, s);
157 } 311 }
158 312
159 void operator delete[] (void *p, size_t s) 313 void operator delete[] (void *p, size_t s)
160 { 314 {
161 g_slice_free1 (s, p); 315 sfree ((char *)p, s);
162 } 316 }
163}; 317};
164 318
165void *salloc_ (int n) throw (std::bad_alloc); 319// makes dynamically allocated objects zero-initialised
166void *salloc_ (int n, void *src) throw (std::bad_alloc); 320struct slice_allocated
167
168// strictly the same as g_slice_alloc, but never returns 0
169template<typename T>
170inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
171
172// also copies src into the new area, like "memdup"
173// if src is 0, clears the memory
174template<typename T>
175inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
176
177// clears the memory
178template<typename T>
179inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
180
181// for symmetry
182template<typename T>
183inline void sfree (T *ptr, int n = 1) throw ()
184{ 321{
185#ifdef PREFER_MALLOC 322 void *operator new (size_t s, void *p)
186 free (ptr); 323 {
187#else 324 return p;
188 g_slice_free1 (n * sizeof (T), (void *)ptr); 325 }
189#endif 326
190} 327 void *operator new (size_t s)
328 {
329 return salloc<char> (s);
330 }
331
332 void *operator new[] (size_t s)
333 {
334 return salloc<char> (s);
335 }
336
337 void operator delete (void *p, size_t s)
338 {
339 sfree ((char *)p, s);
340 }
341
342 void operator delete[] (void *p, size_t s)
343 {
344 sfree ((char *)p, s);
345 }
346};
191 347
192// a STL-compatible allocator that uses g_slice 348// a STL-compatible allocator that uses g_slice
193// boy, this is verbose 349// boy, this is verbose
194template<typename Tp> 350template<typename Tp>
195struct slice_allocator 351struct slice_allocator
207 { 363 {
208 typedef slice_allocator<U> other; 364 typedef slice_allocator<U> other;
209 }; 365 };
210 366
211 slice_allocator () throw () { } 367 slice_allocator () throw () { }
212 slice_allocator (const slice_allocator &o) throw () { } 368 slice_allocator (const slice_allocator &) throw () { }
213 template<typename Tp2> 369 template<typename Tp2>
214 slice_allocator (const slice_allocator<Tp2> &) throw () { } 370 slice_allocator (const slice_allocator<Tp2> &) throw () { }
215 371
216 ~slice_allocator () { } 372 ~slice_allocator () { }
217 373
226 void deallocate (pointer p, size_type n) 382 void deallocate (pointer p, size_type n)
227 { 383 {
228 sfree<Tp> (p, n); 384 sfree<Tp> (p, n);
229 } 385 }
230 386
231 size_type max_size ()const throw () 387 size_type max_size () const throw ()
232 { 388 {
233 return size_t (-1) / sizeof (Tp); 389 return size_t (-1) / sizeof (Tp);
234 } 390 }
235 391
236 void construct (pointer p, const Tp &val) 392 void construct (pointer p, const Tp &val)
247// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 403// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
248// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 404// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
249// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 405// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
250struct tausworthe_random_generator 406struct tausworthe_random_generator
251{ 407{
252 // generator
253 uint32_t state [4]; 408 uint32_t state [4];
254 409
255 void operator =(const tausworthe_random_generator &src) 410 void operator =(const tausworthe_random_generator &src)
256 { 411 {
257 state [0] = src.state [0]; 412 state [0] = src.state [0];
260 state [3] = src.state [3]; 415 state [3] = src.state [3];
261 } 416 }
262 417
263 void seed (uint32_t seed); 418 void seed (uint32_t seed);
264 uint32_t next (); 419 uint32_t next ();
420};
265 421
266 // uniform distribution 422// Xorshift RNGs, George Marsaglia
423// http://www.jstatsoft.org/v08/i14/paper
424// this one is about 40% faster than the tausworthe one above (i.e. not much),
425// despite the inlining, and has the issue of only creating 2**32-1 numbers.
426// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
427struct xorshift_random_generator
428{
429 uint32_t x, y;
430
431 void operator =(const xorshift_random_generator &src)
432 {
433 x = src.x;
434 y = src.y;
435 }
436
437 void seed (uint32_t seed)
438 {
439 x = seed;
440 y = seed * 69069U;
441 }
442
443 uint32_t next ()
444 {
445 uint32_t t = x ^ (x << 10);
446 x = y;
447 y = y ^ (y >> 13) ^ t ^ (t >> 10);
448 return y;
449 }
450};
451
452template<class generator>
453struct random_number_generator : generator
454{
455 // uniform distribution, 0 .. max (0, num - 1)
267 uint32_t operator ()(uint32_t r_max) 456 uint32_t operator ()(uint32_t num)
268 { 457 {
269 return is_constant (r_max) 458 return !is_constant (num) ? get_range (num) // non-constant
270 ? this->next () % r_max 459 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
271 : get_range (r_max); 460 : this->next () & (num - 1); // constant, power-of-two
272 } 461 }
273 462
274 // return a number within (min .. max) 463 // return a number within (min .. max)
275 int operator () (int r_min, int r_max) 464 int operator () (int r_min, int r_max)
276 { 465 {
277 return is_constant (r_min) && is_constant (r_max) 466 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
278 ? r_min + (*this) (max (r_max - r_min + 1, 1)) 467 ? r_min + operator ()(r_max - r_min + 1)
279 : get_range (r_min, r_max); 468 : get_range (r_min, r_max);
280 } 469 }
281 470
282 double operator ()() 471 double operator ()()
283 { 472 {
287protected: 476protected:
288 uint32_t get_range (uint32_t r_max); 477 uint32_t get_range (uint32_t r_max);
289 int get_range (int r_min, int r_max); 478 int get_range (int r_min, int r_max);
290}; 479};
291 480
292typedef tausworthe_random_generator rand_gen; 481typedef random_number_generator<tausworthe_random_generator> rand_gen;
293 482
294extern rand_gen rndm; 483extern rand_gen rndm, rmg_rndm;
484
485INTERFACE_CLASS (attachable)
486struct refcnt_base
487{
488 typedef int refcnt_t;
489 mutable refcnt_t ACC (RW, refcnt);
490
491 MTH void refcnt_inc () const { ++refcnt; }
492 MTH void refcnt_dec () const { --refcnt; }
493
494 refcnt_base () : refcnt (0) { }
495};
496
497// to avoid branches with more advanced compilers
498extern refcnt_base::refcnt_t refcnt_dummy;
295 499
296template<class T> 500template<class T>
297struct refptr 501struct refptr
298{ 502{
503 // p if not null
504 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
505
506 void refcnt_dec ()
507 {
508 if (!is_constant (p))
509 --*refcnt_ref ();
510 else if (p)
511 --p->refcnt;
512 }
513
514 void refcnt_inc ()
515 {
516 if (!is_constant (p))
517 ++*refcnt_ref ();
518 else if (p)
519 ++p->refcnt;
520 }
521
299 T *p; 522 T *p;
300 523
301 refptr () : p(0) { } 524 refptr () : p(0) { }
302 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 525 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
303 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 526 refptr (T *p) : p(p) { refcnt_inc (); }
304 ~refptr () { if (p) p->refcnt_dec (); } 527 ~refptr () { refcnt_dec (); }
305 528
306 const refptr<T> &operator =(T *o) 529 const refptr<T> &operator =(T *o)
307 { 530 {
531 // if decrementing ever destroys we need to reverse the order here
308 if (p) p->refcnt_dec (); 532 refcnt_dec ();
309 p = o; 533 p = o;
310 if (p) p->refcnt_inc (); 534 refcnt_inc ();
311
312 return *this; 535 return *this;
313 } 536 }
314 537
315 const refptr<T> &operator =(const refptr<T> o) 538 const refptr<T> &operator =(const refptr<T> &o)
316 { 539 {
317 *this = o.p; 540 *this = o.p;
318 return *this; 541 return *this;
319 } 542 }
320 543
321 T &operator * () const { return *p; } 544 T &operator * () const { return *p; }
322 T *operator ->() const { return p; } 545 T *operator ->() const { return p; }
323 546
324 operator T *() const { return p; } 547 operator T *() const { return p; }
325}; 548};
326 549
327typedef refptr<maptile> maptile_ptr; 550typedef refptr<maptile> maptile_ptr;
332 555
333struct str_hash 556struct str_hash
334{ 557{
335 std::size_t operator ()(const char *s) const 558 std::size_t operator ()(const char *s) const
336 { 559 {
337 unsigned long hash = 0; 560#if 0
561 uint32_t hash = 0;
338 562
339 /* use the one-at-a-time hash function, which supposedly is 563 /* use the one-at-a-time hash function, which supposedly is
340 * better than the djb2-like one used by perl5.005, but 564 * better than the djb2-like one used by perl5.005, but
341 * certainly is better then the bug used here before. 565 * certainly is better then the bug used here before.
342 * see http://burtleburtle.net/bob/hash/doobs.html 566 * see http://burtleburtle.net/bob/hash/doobs.html
349 } 573 }
350 574
351 hash += hash << 3; 575 hash += hash << 3;
352 hash ^= hash >> 11; 576 hash ^= hash >> 11;
353 hash += hash << 15; 577 hash += hash << 15;
578#else
579 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
580 // it is about twice as fast as the one-at-a-time one,
581 // with good distribution.
582 // FNV-1a is faster on many cpus because the multiplication
583 // runs concurrent with the looping logic.
584 uint32_t hash = 2166136261;
585
586 while (*s)
587 hash = (hash ^ *s++) * 16777619;
588#endif
354 589
355 return hash; 590 return hash;
356 } 591 }
357}; 592};
358 593
362 { 597 {
363 return !strcmp (a, b); 598 return !strcmp (a, b);
364 } 599 }
365}; 600};
366 601
602// Mostly the same as std::vector, but insert/erase can reorder
603// the elements, making append(=insert)/remove O(1) instead of O(n).
604//
605// NOTE: only some forms of erase are available
367template<class T> 606template<class T>
368struct unordered_vector : std::vector<T, slice_allocator<T> > 607struct unordered_vector : std::vector<T, slice_allocator<T> >
369{ 608{
370 typedef typename unordered_vector::iterator iterator; 609 typedef typename unordered_vector::iterator iterator;
371 610
381 { 620 {
382 erase ((unsigned int )(i - this->begin ())); 621 erase ((unsigned int )(i - this->begin ()));
383 } 622 }
384}; 623};
385 624
386template<class T, int T::* index> 625// This container blends advantages of linked lists
626// (efficiency) with vectors (random access) by
627// by using an unordered vector and storing the vector
628// index inside the object.
629//
630// + memory-efficient on most 64 bit archs
631// + O(1) insert/remove
632// + free unique (but varying) id for inserted objects
633// + cache-friendly iteration
634// - only works for pointers to structs
635//
636// NOTE: only some forms of erase/insert are available
637typedef int object_vector_index;
638
639template<class T, object_vector_index T::*indexmember>
387struct object_vector : std::vector<T *, slice_allocator<T *> > 640struct object_vector : std::vector<T *, slice_allocator<T *> >
388{ 641{
642 typedef typename object_vector::iterator iterator;
643
644 bool contains (const T *obj) const
645 {
646 return obj->*indexmember;
647 }
648
649 iterator find (const T *obj)
650 {
651 return obj->*indexmember
652 ? this->begin () + obj->*indexmember - 1
653 : this->end ();
654 }
655
656 void push_back (T *obj)
657 {
658 std::vector<T *, slice_allocator<T *> >::push_back (obj);
659 obj->*indexmember = this->size ();
660 }
661
389 void insert (T *obj) 662 void insert (T *obj)
390 { 663 {
391 assert (!(obj->*index));
392 push_back (obj); 664 push_back (obj);
393 obj->*index = this->size ();
394 } 665 }
395 666
396 void insert (T &obj) 667 void insert (T &obj)
397 { 668 {
398 insert (&obj); 669 insert (&obj);
399 } 670 }
400 671
401 void erase (T *obj) 672 void erase (T *obj)
402 { 673 {
403 assert (obj->*index);
404 int pos = obj->*index; 674 unsigned int pos = obj->*indexmember;
405 obj->*index = 0; 675 obj->*indexmember = 0;
406 676
407 if (pos < this->size ()) 677 if (pos < this->size ())
408 { 678 {
409 (*this)[pos - 1] = (*this)[this->size () - 1]; 679 (*this)[pos - 1] = (*this)[this->size () - 1];
410 (*this)[pos - 1]->*index = pos; 680 (*this)[pos - 1]->*indexmember = pos;
411 } 681 }
412 682
413 this->pop_back (); 683 this->pop_back ();
414 } 684 }
415 685
416 void erase (T &obj) 686 void erase (T &obj)
417 { 687 {
418 errase (&obj); 688 erase (&obj);
419 } 689 }
420}; 690};
421 691
422// basically does what strncpy should do, but appends "..." to strings exceeding length 692// basically does what strncpy should do, but appends "..." to strings exceeding length
693// returns the number of bytes actually used (including \0)
423void assign (char *dst, const char *src, int maxlen); 694int assign (char *dst, const char *src, int maxsize);
424 695
425// type-safe version of assign 696// type-safe version of assign
426template<int N> 697template<int N>
427inline void assign (char (&dst)[N], const char *src) 698inline int assign (char (&dst)[N], const char *src)
428{ 699{
429 assign ((char *)&dst, src, N); 700 return assign ((char *)&dst, src, N);
430} 701}
431 702
432typedef double tstamp; 703typedef double tstamp;
433 704
434// return current time as timestampe 705// return current time as timestamp
435tstamp now (); 706tstamp now ();
436 707
437int similar_direction (int a, int b); 708int similar_direction (int a, int b);
438 709
710// like sprintf, but returns a "static" buffer
711const char *format (const char *format, ...);
712
713/////////////////////////////////////////////////////////////////////////////
714// threads, very very thin wrappers around pthreads
715
716struct thread
717{
718 pthread_t id;
719
720 void start (void *(*start_routine)(void *), void *arg = 0);
721
722 void cancel ()
723 {
724 pthread_cancel (id);
725 }
726
727 void *join ()
728 {
729 void *ret;
730
731 if (pthread_join (id, &ret))
732 cleanup ("pthread_join failed", 1);
733
734 return ret;
735 }
736};
737
738// note that mutexes are not classes
739typedef pthread_mutex_t smutex;
740
741#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
742 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
743#else
744 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
439#endif 745#endif
440 746
747#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
748#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
749#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
750
751typedef pthread_cond_t scond;
752
753#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
754#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
755#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
756#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
757
758#endif
759

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines