ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.43 by root, Mon Apr 23 18:09:57 2007 UTC vs.
Revision 1.128 by root, Tue Nov 27 18:47:35 2018 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
6 *
7 * Deliantra is free software: you can redistribute it and/or modify it under
8 * the terms of the Affero GNU General Public License as published by the
9 * Free Software Foundation, either version 3 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the Affero GNU General Public License
18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
23
1#ifndef UTIL_H__ 24#ifndef UTIL_H__
2#define UTIL_H__ 25#define UTIL_H__
3 26
4//#define PREFER_MALLOC 27#include <compiler.h>
5 28
6#if __GNUC__ >= 3 29#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) __builtin_constant_p (c) 30#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#else 31#define PREFER_MALLOC 0 // use malloc and not the slice allocator
9# define is_constant(c) 0 32
10#endif 33#include <pthread.h>
11 34
12#include <cstddef> 35#include <cstddef>
13#include <cmath> 36#include <cmath>
14#include <new> 37#include <new>
15#include <vector> 38#include <vector>
16 39
17#include <glib.h> 40#include <glib.h>
18 41
42#include <flat_hash_map.hpp>
43
19#include <shstr.h> 44#include <shstr.h>
20#include <traits.h> 45#include <traits.h>
21 46
47#if DEBUG_SALLOC
48# define g_slice_alloc0(s) debug_slice_alloc0(s)
49# define g_slice_alloc(s) debug_slice_alloc(s)
50# define g_slice_free1(s,p) debug_slice_free1(s,p)
51void *g_slice_alloc (unsigned long size);
52void *g_slice_alloc0 (unsigned long size);
53void g_slice_free1 (unsigned long size, void *ptr);
54#elif PREFER_MALLOC
55# define g_slice_alloc0(s) calloc (1, (s))
56# define g_slice_alloc(s) malloc ((s))
57# define g_slice_free1(s,p) free ((p))
58#endif
59
22// use a gcc extension for auto declarations until ISO C++ sanctifies them 60// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
23#define auto(var,expr) typeof(expr) var = (expr) 61#define auto(var,expr) decltype(expr) var = (expr)
24 62
63#if cplusplus_does_not_suck /* still sucks in codesize with gcc 6, although local types work now */
64// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
65template<typename T, int N>
66static inline int array_length (const T (&arr)[N])
67{
68 return N;
69}
70#else
71#define array_length(name) (sizeof (name) / sizeof (name [0]))
72#endif
73
25// very ugly macro that basicaly declares and initialises a variable 74// very ugly macro that basically declares and initialises a variable
26// that is in scope for the next statement only 75// that is in scope for the next statement only
27// works only for stuff that can be assigned 0 and converts to false 76// works only for stuff that can be assigned 0 and converts to false
28// (note: works great for pointers) 77// (note: works great for pointers)
29// most ugly macro I ever wrote 78// most ugly macro I ever wrote
30#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 79#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31 80
32// in range including end 81// in range including end
33#define IN_RANGE_INC(val,beg,end) \ 82#define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 83 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35 84
36// in range excluding end 85// in range excluding end
37#define IN_RANGE_EXC(val,beg,end) \ 86#define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 87 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39 88
89ecb_cold void cleanup (const char *cause, bool make_core = false);
40void fork_abort (const char *msg); 90ecb_cold void fork_abort (const char *msg);
41 91
42// rationale for using (U) not (T) is to reduce signed/unsigned issues, 92// rationale for using (U) not (T) is to reduce signed/unsigned issues,
43// as a is often a constant while b is the variable. it is still a bug, though. 93// as a is often a constant while b is the variable. it is still a bug, though.
44template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 94template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
45template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 95template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
46template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 96template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47 97
98template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
99template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
100template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
101
48template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 102template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
103
104template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
105template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
106
107// sign returns -1 or +1
108template<typename T>
109static inline T sign (T v) { return v < 0 ? -1 : +1; }
110// relies on 2c representation
111template<>
112inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
113template<>
114inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
115template<>
116inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
117
118// sign0 returns -1, 0 or +1
119template<typename T>
120static inline T sign0 (T v) { return v ? sign (v) : 0; }
121
122//clashes with C++0x
123template<typename T, typename U>
124static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
125
126// div* only work correctly for div > 0
127// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
128template<typename T> static inline T div (T val, T div)
129{
130 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
131}
132
133template<> inline float div (float val, float div) { return val / div; }
134template<> inline double div (double val, double div) { return val / div; }
135
136// div, round-up
137template<typename T> static inline T div_ru (T val, T div)
138{
139 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
140}
141// div, round-down
142template<typename T> static inline T div_rd (T val, T div)
143{
144 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
145}
146
147// lerp* only work correctly for min_in < max_in
148// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
149template<typename T>
150static inline T
151lerp (T val, T min_in, T max_in, T min_out, T max_out)
152{
153 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
154}
155
156// lerp, round-down
157template<typename T>
158static inline T
159lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
160{
161 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
162}
163
164// lerp, round-up
165template<typename T>
166static inline T
167lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
168{
169 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
170}
49 171
50// lots of stuff taken from FXT 172// lots of stuff taken from FXT
51 173
52/* Rotate right. This is used in various places for checksumming */ 174/* Rotate right. This is used in various places for checksumming */
53//TODO: that sucks, use a better checksum algo 175//TODO: that sucks, use a better checksum algo
90 int32_t d = b - a; 212 int32_t d = b - a;
91 d &= d >> 31; 213 d &= d >> 31;
92 return b - d; 214 return b - d;
93} 215}
94 216
95// this is much faster than crossfires original algorithm 217// this is much faster than crossfire's original algorithm
96// on modern cpus 218// on modern cpus
97inline int 219inline int
98isqrt (int n) 220isqrt (int n)
99{ 221{
100 return (int)sqrtf ((float)n); 222 return (int)sqrtf ((float)n);
223}
224
225// this is kind of like the ^^ operator, if it would exist, without sequence point.
226// more handy than it looks like, due to the implicit !! done on its arguments
227inline bool
228logical_xor (bool a, bool b)
229{
230 return a != b;
231}
232
233inline bool
234logical_implies (bool a, bool b)
235{
236 return a <= b;
101} 237}
102 238
103// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 239// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
104#if 0 240#if 0
105// and has a max. error of 6 in the range -100..+100. 241// and has a max. error of 6 in the range -100..+100.
106#else 242#else
107// and has a max. error of 9 in the range -100..+100. 243// and has a max. error of 9 in the range -100..+100.
108#endif 244#endif
109inline int 245inline int
110idistance (int dx, int dy) 246idistance (int dx, int dy)
111{ 247{
112 unsigned int dx_ = abs (dx); 248 unsigned int dx_ = abs (dx);
113 unsigned int dy_ = abs (dy); 249 unsigned int dy_ = abs (dy);
114 250
115#if 0 251#if 0
116 return dx_ > dy_ 252 return dx_ > dy_
119#else 255#else
120 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 256 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
121#endif 257#endif
122} 258}
123 259
260// can be substantially faster than floor, if your value range allows for it
261template<typename T>
262inline T
263fastfloor (T x)
264{
265 return std::floor (x);
266}
267
268inline float
269fastfloor (float x)
270{
271 return sint32(x) - (x < 0);
272}
273
274inline double
275fastfloor (double x)
276{
277 return sint64(x) - (x < 0);
278}
279
124/* 280/*
125 * absdir(int): Returns a number between 1 and 8, which represent 281 * absdir(int): Returns a number between 1 and 8, which represent
126 * the "absolute" direction of a number (it actually takes care of 282 * the "absolute" direction of a number (it actually takes care of
127 * "overflow" in previous calculations of a direction). 283 * "overflow" in previous calculations of a direction).
128 */ 284 */
130absdir (int d) 286absdir (int d)
131{ 287{
132 return ((d - 1) & 7) + 1; 288 return ((d - 1) & 7) + 1;
133} 289}
134 290
291#define for_all_bits_sparse_32(mask, idxvar) \
292 for (uint32_t idxvar, mask_ = mask; \
293 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
294
295extern ssize_t slice_alloc; // statistics
296
297void *salloc_ (int n);
298void *salloc_ (int n, void *src);
299
300// strictly the same as g_slice_alloc, but never returns 0
301template<typename T>
302inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
303
304// also copies src into the new area, like "memdup"
305// if src is 0, clears the memory
306template<typename T>
307inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
308
309// clears the memory
310template<typename T>
311inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
312
313// for symmetry
314template<typename T>
315inline void sfree (T *ptr, int n = 1) noexcept
316{
317 if (expect_true (ptr))
318 {
319 slice_alloc -= n * sizeof (T);
320 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
321 g_slice_free1 (n * sizeof (T), (void *)ptr);
322 }
323}
324
325// nulls the pointer
326template<typename T>
327inline void sfree0 (T *&ptr, int n = 1) noexcept
328{
329 sfree<T> (ptr, n);
330 ptr = 0;
331}
332
135// makes dynamically allocated objects zero-initialised 333// makes dynamically allocated objects zero-initialised
136struct zero_initialised 334struct zero_initialised
137{ 335{
138 void *operator new (size_t s, void *p) 336 void *operator new (size_t s, void *p)
139 { 337 {
141 return p; 339 return p;
142 } 340 }
143 341
144 void *operator new (size_t s) 342 void *operator new (size_t s)
145 { 343 {
146 return g_slice_alloc0 (s); 344 return salloc0<char> (s);
147 } 345 }
148 346
149 void *operator new[] (size_t s) 347 void *operator new[] (size_t s)
150 { 348 {
151 return g_slice_alloc0 (s); 349 return salloc0<char> (s);
152 } 350 }
153 351
154 void operator delete (void *p, size_t s) 352 void operator delete (void *p, size_t s)
155 { 353 {
156 g_slice_free1 (s, p); 354 sfree ((char *)p, s);
157 } 355 }
158 356
159 void operator delete[] (void *p, size_t s) 357 void operator delete[] (void *p, size_t s)
160 { 358 {
161 g_slice_free1 (s, p); 359 sfree ((char *)p, s);
162 } 360 }
163}; 361};
164 362
165void *salloc_ (int n) throw (std::bad_alloc); 363// makes dynamically allocated objects zero-initialised
166void *salloc_ (int n, void *src) throw (std::bad_alloc); 364struct slice_allocated
167
168// strictly the same as g_slice_alloc, but never returns 0
169template<typename T>
170inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
171
172// also copies src into the new area, like "memdup"
173// if src is 0, clears the memory
174template<typename T>
175inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
176
177// clears the memory
178template<typename T>
179inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
180
181// for symmetry
182template<typename T>
183inline void sfree (T *ptr, int n = 1) throw ()
184{ 365{
185#ifdef PREFER_MALLOC 366 void *operator new (size_t s, void *p)
186 free (ptr); 367 {
187#else 368 return p;
188 g_slice_free1 (n * sizeof (T), (void *)ptr); 369 }
189#endif 370
190} 371 void *operator new (size_t s)
372 {
373 return salloc<char> (s);
374 }
375
376 void *operator new[] (size_t s)
377 {
378 return salloc<char> (s);
379 }
380
381 void operator delete (void *p, size_t s)
382 {
383 sfree ((char *)p, s);
384 }
385
386 void operator delete[] (void *p, size_t s)
387 {
388 sfree ((char *)p, s);
389 }
390};
191 391
192// a STL-compatible allocator that uses g_slice 392// a STL-compatible allocator that uses g_slice
193// boy, this is verbose 393// boy, this is verbose
194template<typename Tp> 394template<typename Tp>
195struct slice_allocator 395struct slice_allocator
200 typedef const Tp *const_pointer; 400 typedef const Tp *const_pointer;
201 typedef Tp &reference; 401 typedef Tp &reference;
202 typedef const Tp &const_reference; 402 typedef const Tp &const_reference;
203 typedef Tp value_type; 403 typedef Tp value_type;
204 404
205 template <class U> 405 template <class U>
206 struct rebind 406 struct rebind
207 { 407 {
208 typedef slice_allocator<U> other; 408 typedef slice_allocator<U> other;
209 }; 409 };
210 410
211 slice_allocator () throw () { } 411 slice_allocator () noexcept { }
212 slice_allocator (const slice_allocator &o) throw () { } 412 slice_allocator (const slice_allocator &) noexcept { }
213 template<typename Tp2> 413 template<typename Tp2>
214 slice_allocator (const slice_allocator<Tp2> &) throw () { } 414 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
215 415
216 ~slice_allocator () { } 416 ~slice_allocator () { }
217 417
218 pointer address (reference x) const { return &x; } 418 pointer address (reference x) const { return &x; }
219 const_pointer address (const_reference x) const { return &x; } 419 const_pointer address (const_reference x) const { return &x; }
226 void deallocate (pointer p, size_type n) 426 void deallocate (pointer p, size_type n)
227 { 427 {
228 sfree<Tp> (p, n); 428 sfree<Tp> (p, n);
229 } 429 }
230 430
231 size_type max_size ()const throw () 431 size_type max_size () const noexcept
232 { 432 {
233 return size_t (-1) / sizeof (Tp); 433 return size_t (-1) / sizeof (Tp);
234 } 434 }
235 435
236 void construct (pointer p, const Tp &val) 436 void construct (pointer p, const Tp &val)
242 { 442 {
243 p->~Tp (); 443 p->~Tp ();
244 } 444 }
245}; 445};
246 446
247// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 447// basically a memory area, but refcounted
248// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 448struct refcnt_buf
249// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
250struct tausworthe_random_generator
251{ 449{
252 // generator 450 char *data;
253 uint32_t state [4];
254 451
255 void operator =(const tausworthe_random_generator &src) 452 refcnt_buf (size_t size = 0);
256 { 453 refcnt_buf (void *data, size_t size);
257 state [0] = src.state [0];
258 state [1] = src.state [1];
259 state [2] = src.state [2];
260 state [3] = src.state [3];
261 }
262 454
263 void seed (uint32_t seed); 455 refcnt_buf (const refcnt_buf &src)
264 uint32_t next ();
265
266 // uniform distribution
267 uint32_t operator ()(uint32_t num)
268 { 456 {
269 return is_constant (num) 457 data = src.data;
270 ? (next () * (uint64_t)num) >> 32U 458 inc ();
271 : get_range (num);
272 } 459 }
273 460
274 // return a number within (min .. max) 461 ~refcnt_buf ();
275 int operator () (int r_min, int r_max)
276 {
277 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
278 ? r_min + operator ()(r_max - r_min + 1)
279 : get_range (r_min, r_max);
280 }
281 462
282 double operator ()() 463 refcnt_buf &operator =(const refcnt_buf &src);
464
465 operator char *()
283 { 466 {
284 return this->next () / (double)0xFFFFFFFFU; 467 return data;
468 }
469
470 size_t size () const
471 {
472 return _size ();
285 } 473 }
286 474
287protected: 475protected:
288 uint32_t get_range (uint32_t r_max); 476 enum {
289 int get_range (int r_min, int r_max); 477 overhead = sizeof (uint32_t) * 2
290}; 478 };
291 479
292typedef tausworthe_random_generator rand_gen; 480 uint32_t &_size () const
481 {
482 return ((unsigned int *)data)[-2];
483 }
293 484
294extern rand_gen rndm; 485 uint32_t &_refcnt () const
486 {
487 return ((unsigned int *)data)[-1];
488 }
489
490 void _alloc (uint32_t size)
491 {
492 data = ((char *)salloc<char> (size + overhead)) + overhead;
493 _size () = size;
494 _refcnt () = 1;
495 }
496
497 void _dealloc ();
498
499 void inc ()
500 {
501 ++_refcnt ();
502 }
503
504 void dec ()
505 {
506 if (!--_refcnt ())
507 _dealloc ();
508 }
509};
510
511INTERFACE_CLASS (attachable)
512struct refcnt_base
513{
514 typedef int refcnt_t;
515 mutable refcnt_t ACC (RW, refcnt);
516
517 MTH void refcnt_inc () const { ++refcnt; }
518 MTH void refcnt_dec () const { --refcnt; }
519
520 refcnt_base () : refcnt (0) { }
521};
522
523// to avoid branches with more advanced compilers
524extern refcnt_base::refcnt_t refcnt_dummy;
295 525
296template<class T> 526template<class T>
297struct refptr 527struct refptr
298{ 528{
529 // p if not null
530 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
531
532 void refcnt_dec ()
533 {
534 if (!ecb_is_constant (p))
535 --*refcnt_ref ();
536 else if (p)
537 --p->refcnt;
538 }
539
540 void refcnt_inc ()
541 {
542 if (!ecb_is_constant (p))
543 ++*refcnt_ref ();
544 else if (p)
545 ++p->refcnt;
546 }
547
299 T *p; 548 T *p;
300 549
301 refptr () : p(0) { } 550 refptr () : p(0) { }
302 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 551 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
303 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 552 refptr (T *p) : p(p) { refcnt_inc (); }
304 ~refptr () { if (p) p->refcnt_dec (); } 553 ~refptr () { refcnt_dec (); }
305 554
306 const refptr<T> &operator =(T *o) 555 const refptr<T> &operator =(T *o)
307 { 556 {
557 // if decrementing ever destroys we need to reverse the order here
308 if (p) p->refcnt_dec (); 558 refcnt_dec ();
309 p = o; 559 p = o;
310 if (p) p->refcnt_inc (); 560 refcnt_inc ();
311
312 return *this; 561 return *this;
313 } 562 }
314 563
315 const refptr<T> &operator =(const refptr<T> o) 564 const refptr<T> &operator =(const refptr<T> &o)
316 { 565 {
317 *this = o.p; 566 *this = o.p;
318 return *this; 567 return *this;
319 } 568 }
320 569
321 T &operator * () const { return *p; } 570 T &operator * () const { return *p; }
322 T *operator ->() const { return p; } 571 T *operator ->() const { return p; }
323 572
324 operator T *() const { return p; } 573 operator T *() const { return p; }
325}; 574};
326 575
327typedef refptr<maptile> maptile_ptr; 576typedef refptr<maptile> maptile_ptr;
328typedef refptr<object> object_ptr; 577typedef refptr<object> object_ptr;
329typedef refptr<archetype> arch_ptr; 578typedef refptr<archetype> arch_ptr;
330typedef refptr<client> client_ptr; 579typedef refptr<client> client_ptr;
331typedef refptr<player> player_ptr; 580typedef refptr<player> player_ptr;
581typedef refptr<region> region_ptr;
582
583#define STRHSH_NULL 2166136261
584
585static inline uint32_t
586strhsh (const char *s)
587{
588 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
589 // it is about twice as fast as the one-at-a-time one,
590 // with good distribution.
591 // FNV-1a is faster on many cpus because the multiplication
592 // runs concurrently with the looping logic.
593 // we modify the hash a bit to improve its distribution
594 uint32_t hash = STRHSH_NULL;
595
596 while (*s)
597 hash = (hash ^ *s++) * 16777619U;
598
599 return hash ^ (hash >> 16);
600}
601
602static inline uint32_t
603memhsh (const char *s, size_t len)
604{
605 uint32_t hash = STRHSH_NULL;
606
607 while (len--)
608 hash = (hash ^ *s++) * 16777619U;
609
610 return hash;
611}
332 612
333struct str_hash 613struct str_hash
334{ 614{
335 std::size_t operator ()(const char *s) const 615 std::size_t operator ()(const char *s) const
336 { 616 {
337 unsigned long hash = 0;
338
339 /* use the one-at-a-time hash function, which supposedly is
340 * better than the djb2-like one used by perl5.005, but
341 * certainly is better then the bug used here before.
342 * see http://burtleburtle.net/bob/hash/doobs.html
343 */
344 while (*s)
345 {
346 hash += *s++;
347 hash += hash << 10;
348 hash ^= hash >> 6;
349 }
350
351 hash += hash << 3;
352 hash ^= hash >> 11;
353 hash += hash << 15;
354
355 return hash; 617 return strhsh (s);
356 } 618 }
619
620 std::size_t operator ()(const shstr &s) const
621 {
622 return strhsh (s);
623 }
624
625 typedef ska::power_of_two_hash_policy hash_policy;
357}; 626};
358 627
359struct str_equal 628struct str_equal
360{ 629{
361 bool operator ()(const char *a, const char *b) const 630 bool operator ()(const char *a, const char *b) const
362 { 631 {
363 return !strcmp (a, b); 632 return !strcmp (a, b);
364 } 633 }
365}; 634};
366 635
636// Mostly the same as std::vector, but insert/erase can reorder
637// the elements, making append(=insert)/remove O(1) instead of O(n).
638//
639// NOTE: only some forms of erase are available
367template<class T> 640template<class T>
368struct unordered_vector : std::vector<T, slice_allocator<T> > 641struct unordered_vector : std::vector<T, slice_allocator<T> >
369{ 642{
370 typedef typename unordered_vector::iterator iterator; 643 typedef typename unordered_vector::iterator iterator;
371 644
381 { 654 {
382 erase ((unsigned int )(i - this->begin ())); 655 erase ((unsigned int )(i - this->begin ()));
383 } 656 }
384}; 657};
385 658
386template<class T, int T::* index> 659// This container blends advantages of linked lists
660// (efficiency) with vectors (random access) by
661// using an unordered vector and storing the vector
662// index inside the object.
663//
664// + memory-efficient on most 64 bit archs
665// + O(1) insert/remove
666// + free unique (but varying) id for inserted objects
667// + cache-friendly iteration
668// - only works for pointers to structs
669//
670// NOTE: only some forms of erase/insert are available
671typedef int object_vector_index;
672
673template<class T, object_vector_index T::*indexmember>
387struct object_vector : std::vector<T *, slice_allocator<T *> > 674struct object_vector : std::vector<T *, slice_allocator<T *> >
388{ 675{
676 typedef typename object_vector::iterator iterator;
677
678 bool contains (const T *obj) const
679 {
680 return obj->*indexmember;
681 }
682
683 iterator find (const T *obj)
684 {
685 return obj->*indexmember
686 ? this->begin () + obj->*indexmember - 1
687 : this->end ();
688 }
689
690 void push_back (T *obj)
691 {
692 std::vector<T *, slice_allocator<T *> >::push_back (obj);
693 obj->*indexmember = this->size ();
694 }
695
389 void insert (T *obj) 696 void insert (T *obj)
390 { 697 {
391 assert (!(obj->*index));
392 push_back (obj); 698 push_back (obj);
393 obj->*index = this->size ();
394 } 699 }
395 700
396 void insert (T &obj) 701 void insert (T &obj)
397 { 702 {
398 insert (&obj); 703 insert (&obj);
399 } 704 }
400 705
401 void erase (T *obj) 706 void erase (T *obj)
402 { 707 {
403 assert (obj->*index); 708 object_vector_index pos = obj->*indexmember;
404 unsigned int pos = obj->*index;
405 obj->*index = 0; 709 obj->*indexmember = 0;
406 710
407 if (pos < this->size ()) 711 if (pos < this->size ())
408 { 712 {
409 (*this)[pos - 1] = (*this)[this->size () - 1]; 713 (*this)[pos - 1] = (*this)[this->size () - 1];
410 (*this)[pos - 1]->*index = pos; 714 (*this)[pos - 1]->*indexmember = pos;
411 } 715 }
412 716
413 this->pop_back (); 717 this->pop_back ();
414 } 718 }
415 719
416 void erase (T &obj) 720 void erase (T &obj)
417 { 721 {
418 errase (&obj); 722 erase (&obj);
419 } 723 }
420}; 724};
725
726/////////////////////////////////////////////////////////////////////////////
727
728// something like a vector or stack, but without
729// out of bounds checking
730template<typename T>
731struct fixed_stack
732{
733 T *data;
734 int size;
735 int max;
736
737 fixed_stack ()
738 : size (0), data (0)
739 {
740 }
741
742 fixed_stack (int max)
743 : size (0), max (max)
744 {
745 data = salloc<T> (max);
746 }
747
748 void reset (int new_max)
749 {
750 sfree (data, max);
751 size = 0;
752 max = new_max;
753 data = salloc<T> (max);
754 }
755
756 void free ()
757 {
758 sfree (data, max);
759 data = 0;
760 }
761
762 ~fixed_stack ()
763 {
764 sfree (data, max);
765 }
766
767 T &operator[](int idx)
768 {
769 return data [idx];
770 }
771
772 void push (T v)
773 {
774 data [size++] = v;
775 }
776
777 T &pop ()
778 {
779 return data [--size];
780 }
781
782 T remove (int idx)
783 {
784 T v = data [idx];
785
786 data [idx] = data [--size];
787
788 return v;
789 }
790};
791
792/////////////////////////////////////////////////////////////////////////////
421 793
422// basically does what strncpy should do, but appends "..." to strings exceeding length 794// basically does what strncpy should do, but appends "..." to strings exceeding length
795// returns the number of bytes actually used (including \0)
423void assign (char *dst, const char *src, int maxlen); 796int assign (char *dst, const char *src, int maxsize);
424 797
425// type-safe version of assign 798// type-safe version of assign
426template<int N> 799template<int N>
427inline void assign (char (&dst)[N], const char *src) 800inline int assign (char (&dst)[N], const char *src)
428{ 801{
429 assign ((char *)&dst, src, N); 802 return assign ((char *)&dst, src, N);
430} 803}
431 804
432typedef double tstamp; 805typedef double tstamp;
433 806
434// return current time as timestampe 807// return current time as timestamp
435tstamp now (); 808tstamp now ();
436 809
437int similar_direction (int a, int b); 810int similar_direction (int a, int b);
438 811
439// like printf, but returns a std::string 812// like v?sprintf, but returns a "static" buffer
440const std::string format (const char *format, ...); 813char *vformat (const char *format, va_list ap);
814char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
441 815
816// safety-check player input which will become object->msg
817bool msg_is_safe (const char *msg);
818
819/////////////////////////////////////////////////////////////////////////////
820// threads, very very thin wrappers around pthreads
821
822struct thread
823{
824 pthread_t id;
825
826 void start (void *(*start_routine)(void *), void *arg = 0);
827
828 void cancel ()
829 {
830 pthread_cancel (id);
831 }
832
833 void *join ()
834 {
835 void *ret;
836
837 if (pthread_join (id, &ret))
838 cleanup ("pthread_join failed", 1);
839
840 return ret;
841 }
842};
843
844// note that mutexes are not classes
845typedef pthread_mutex_t smutex;
846
847#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
848 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
849#else
850 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
442#endif 851#endif
443 852
853#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
854#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
855#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
856
857typedef pthread_cond_t scond;
858
859#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
860#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
861#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
862#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
863
864#endif
865

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines