ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.5 by pippijn, Thu Sep 7 20:03:20 2006 UTC vs.
Revision 1.65 by root, Tue Apr 1 19:50:38 2008 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
25#define DEBUG_SALLOC 0
26#define PREFER_MALLOC 0
27
4#if __GNUC__ >= 3 28#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 29# define is_constant(c) __builtin_constant_p (c)
30# define expect(expr,value) __builtin_expect ((expr),(value))
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
6#else 32#else
7# define is_constant(c) 0 33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
8#endif 36#endif
37
38#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
39# define decltype(x) typeof(x)
40#endif
41
42// put into ifs if you are very sure that the expression
43// is mostly true or mosty false. note that these return
44// booleans, not the expression.
45#define expect_false(expr) expect ((expr) != 0, 0)
46#define expect_true(expr) expect ((expr) != 0, 1)
47
48#include <cstddef>
49#include <cmath>
50#include <new>
51#include <vector>
52
53#include <glib.h>
54
55#include <shstr.h>
56#include <traits.h>
57
58#if DEBUG_SALLOC
59# define g_slice_alloc0(s) debug_slice_alloc0(s)
60# define g_slice_alloc(s) debug_slice_alloc(s)
61# define g_slice_free1(s,p) debug_slice_free1(s,p)
62void *g_slice_alloc (unsigned long size);
63void *g_slice_alloc0 (unsigned long size);
64void g_slice_free1 (unsigned long size, void *ptr);
65#endif
66
67// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
68#define auto(var,expr) decltype(expr) var = (expr)
69
70// very ugly macro that basicaly declares and initialises a variable
71// that is in scope for the next statement only
72// works only for stuff that can be assigned 0 and converts to false
73// (note: works great for pointers)
74// most ugly macro I ever wrote
75#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
76
77// in range including end
78#define IN_RANGE_INC(val,beg,end) \
79 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
80
81// in range excluding end
82#define IN_RANGE_EXC(val,beg,end) \
83 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
84
85void fork_abort (const char *msg);
86
87// rationale for using (U) not (T) is to reduce signed/unsigned issues,
88// as a is often a constant while b is the variable. it is still a bug, though.
89template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
90template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
91template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
92
93template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
94
95template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
96template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
97
98template<typename T>
99static inline T
100lerp (T val, T min_in, T max_in, T min_out, T max_out)
101{
102 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
103}
104
105// lots of stuff taken from FXT
106
107/* Rotate right. This is used in various places for checksumming */
108//TODO: that sucks, use a better checksum algo
109static inline uint32_t
110rotate_right (uint32_t c, uint32_t count = 1)
111{
112 return (c << (32 - count)) | (c >> count);
113}
114
115static inline uint32_t
116rotate_left (uint32_t c, uint32_t count = 1)
117{
118 return (c >> (32 - count)) | (c << count);
119}
120
121// Return abs(a-b)
122// Both a and b must not have the most significant bit set
123static inline uint32_t
124upos_abs_diff (uint32_t a, uint32_t b)
125{
126 long d1 = b - a;
127 long d2 = (d1 & (d1 >> 31)) << 1;
128
129 return d1 - d2; // == (b - d) - (a + d);
130}
131
132// Both a and b must not have the most significant bit set
133static inline uint32_t
134upos_min (uint32_t a, uint32_t b)
135{
136 int32_t d = b - a;
137 d &= d >> 31;
138 return a + d;
139}
140
141// Both a and b must not have the most significant bit set
142static inline uint32_t
143upos_max (uint32_t a, uint32_t b)
144{
145 int32_t d = b - a;
146 d &= d >> 31;
147 return b - d;
148}
149
150// this is much faster than crossfires original algorithm
151// on modern cpus
152inline int
153isqrt (int n)
154{
155 return (int)sqrtf ((float)n);
156}
157
158// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
159#if 0
160// and has a max. error of 6 in the range -100..+100.
161#else
162// and has a max. error of 9 in the range -100..+100.
163#endif
164inline int
165idistance (int dx, int dy)
166{
167 unsigned int dx_ = abs (dx);
168 unsigned int dy_ = abs (dy);
169
170#if 0
171 return dx_ > dy_
172 ? (dx_ * 61685 + dy_ * 26870) >> 16
173 : (dy_ * 61685 + dx_ * 26870) >> 16;
174#else
175 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
176#endif
177}
178
179/*
180 * absdir(int): Returns a number between 1 and 8, which represent
181 * the "absolute" direction of a number (it actually takes care of
182 * "overflow" in previous calculations of a direction).
183 */
184inline int
185absdir (int d)
186{
187 return ((d - 1) & 7) + 1;
188}
189
190extern size_t slice_alloc; // statistics
9 191
10// makes dynamically allocated objects zero-initialised 192// makes dynamically allocated objects zero-initialised
11struct zero_initialised 193struct zero_initialised
12{ 194{
195 void *operator new (size_t s, void *p)
196 {
197 memset (p, 0, s);
198 return p;
199 }
200
13 void *operator new (size_t s); 201 void *operator new (size_t s)
202 {
203 slice_alloc += s;
204 return g_slice_alloc0 (s);
205 }
206
14 void *operator new [] (size_t s); 207 void *operator new[] (size_t s)
208 {
209 slice_alloc += s;
210 return g_slice_alloc0 (s);
211 }
212
15 void operator delete (void *p, size_t s); 213 void operator delete (void *p, size_t s)
214 {
215 slice_alloc -= s;
216 g_slice_free1 (s, p);
217 }
218
16 void operator delete [] (void *p, size_t s); 219 void operator delete[] (void *p, size_t s)
220 {
221 slice_alloc -= s;
222 g_slice_free1 (s, p);
223 }
17}; 224};
225
226void *salloc_ (int n) throw (std::bad_alloc);
227void *salloc_ (int n, void *src) throw (std::bad_alloc);
228
229// strictly the same as g_slice_alloc, but never returns 0
230template<typename T>
231inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
232
233// also copies src into the new area, like "memdup"
234// if src is 0, clears the memory
235template<typename T>
236inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
237
238// clears the memory
239template<typename T>
240inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
241
242// for symmetry
243template<typename T>
244inline void sfree (T *ptr, int n = 1) throw ()
245{
246#if PREFER_MALLOC
247 free (ptr);
248#else
249 slice_alloc -= n * sizeof (T);
250 g_slice_free1 (n * sizeof (T), (void *)ptr);
251#endif
252}
253
254// a STL-compatible allocator that uses g_slice
255// boy, this is verbose
256template<typename Tp>
257struct slice_allocator
258{
259 typedef size_t size_type;
260 typedef ptrdiff_t difference_type;
261 typedef Tp *pointer;
262 typedef const Tp *const_pointer;
263 typedef Tp &reference;
264 typedef const Tp &const_reference;
265 typedef Tp value_type;
266
267 template <class U>
268 struct rebind
269 {
270 typedef slice_allocator<U> other;
271 };
272
273 slice_allocator () throw () { }
274 slice_allocator (const slice_allocator &) throw () { }
275 template<typename Tp2>
276 slice_allocator (const slice_allocator<Tp2> &) throw () { }
277
278 ~slice_allocator () { }
279
280 pointer address (reference x) const { return &x; }
281 const_pointer address (const_reference x) const { return &x; }
282
283 pointer allocate (size_type n, const_pointer = 0)
284 {
285 return salloc<Tp> (n);
286 }
287
288 void deallocate (pointer p, size_type n)
289 {
290 sfree<Tp> (p, n);
291 }
292
293 size_type max_size () const throw ()
294 {
295 return size_t (-1) / sizeof (Tp);
296 }
297
298 void construct (pointer p, const Tp &val)
299 {
300 ::new (p) Tp (val);
301 }
302
303 void destroy (pointer p)
304 {
305 p->~Tp ();
306 }
307};
308
309// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
310// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
311// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
312struct tausworthe_random_generator
313{
314 // generator
315 uint32_t state [4];
316
317 void operator =(const tausworthe_random_generator &src)
318 {
319 state [0] = src.state [0];
320 state [1] = src.state [1];
321 state [2] = src.state [2];
322 state [3] = src.state [3];
323 }
324
325 void seed (uint32_t seed);
326 uint32_t next ();
327
328 // uniform distribution
329 uint32_t operator ()(uint32_t num)
330 {
331 return is_constant (num)
332 ? (next () * (uint64_t)num) >> 32U
333 : get_range (num);
334 }
335
336 // return a number within (min .. max)
337 int operator () (int r_min, int r_max)
338 {
339 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
340 ? r_min + operator ()(r_max - r_min + 1)
341 : get_range (r_min, r_max);
342 }
343
344 double operator ()()
345 {
346 return this->next () / (double)0xFFFFFFFFU;
347 }
348
349protected:
350 uint32_t get_range (uint32_t r_max);
351 int get_range (int r_min, int r_max);
352};
353
354typedef tausworthe_random_generator rand_gen;
355
356extern rand_gen rndm;
357
358INTERFACE_CLASS (attachable)
359struct refcnt_base
360{
361 typedef int refcnt_t;
362 mutable refcnt_t ACC (RW, refcnt);
363
364 MTH void refcnt_inc () const { ++refcnt; }
365 MTH void refcnt_dec () const { --refcnt; }
366
367 refcnt_base () : refcnt (0) { }
368};
369
370// to avoid branches with more advanced compilers
371extern refcnt_base::refcnt_t refcnt_dummy;
372
373template<class T>
374struct refptr
375{
376 // p if not null
377 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
378
379 void refcnt_dec ()
380 {
381 if (!is_constant (p))
382 --*refcnt_ref ();
383 else if (p)
384 --p->refcnt;
385 }
386
387 void refcnt_inc ()
388 {
389 if (!is_constant (p))
390 ++*refcnt_ref ();
391 else if (p)
392 ++p->refcnt;
393 }
394
395 T *p;
396
397 refptr () : p(0) { }
398 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
399 refptr (T *p) : p(p) { refcnt_inc (); }
400 ~refptr () { refcnt_dec (); }
401
402 const refptr<T> &operator =(T *o)
403 {
404 // if decrementing ever destroys we need to reverse the order here
405 refcnt_dec ();
406 p = o;
407 refcnt_inc ();
408 return *this;
409 }
410
411 const refptr<T> &operator =(const refptr<T> &o)
412 {
413 *this = o.p;
414 return *this;
415 }
416
417 T &operator * () const { return *p; }
418 T *operator ->() const { return p; }
419
420 operator T *() const { return p; }
421};
422
423typedef refptr<maptile> maptile_ptr;
424typedef refptr<object> object_ptr;
425typedef refptr<archetype> arch_ptr;
426typedef refptr<client> client_ptr;
427typedef refptr<player> player_ptr;
18 428
19struct str_hash 429struct str_hash
20{ 430{
21 std::size_t operator ()(const char *s) const 431 std::size_t operator ()(const char *s) const
22 { 432 {
48 { 458 {
49 return !strcmp (a, b); 459 return !strcmp (a, b);
50 } 460 }
51}; 461};
52 462
53#endif 463// Mostly the same as std::vector, but insert/erase can reorder
464// the elements, making append(=insert)/remove O(1) instead of O(n).
465//
466// NOTE: only some forms of erase are available
467template<class T>
468struct unordered_vector : std::vector<T, slice_allocator<T> >
469{
470 typedef typename unordered_vector::iterator iterator;
54 471
472 void erase (unsigned int pos)
473 {
474 if (pos < this->size () - 1)
475 (*this)[pos] = (*this)[this->size () - 1];
476
477 this->pop_back ();
478 }
479
480 void erase (iterator i)
481 {
482 erase ((unsigned int )(i - this->begin ()));
483 }
484};
485
486// This container blends advantages of linked lists
487// (efficiency) with vectors (random access) by
488// by using an unordered vector and storing the vector
489// index inside the object.
490//
491// + memory-efficient on most 64 bit archs
492// + O(1) insert/remove
493// + free unique (but varying) id for inserted objects
494// + cache-friendly iteration
495// - only works for pointers to structs
496//
497// NOTE: only some forms of erase/insert are available
498typedef int object_vector_index;
499
500template<class T, object_vector_index T::*indexmember>
501struct object_vector : std::vector<T *, slice_allocator<T *> >
502{
503 typedef typename object_vector::iterator iterator;
504
505 bool contains (const T *obj) const
506 {
507 return obj->*indexmember;
508 }
509
510 iterator find (const T *obj)
511 {
512 return obj->*indexmember
513 ? this->begin () + obj->*indexmember - 1
514 : this->end ();
515 }
516
517 void push_back (T *obj)
518 {
519 std::vector<T *, slice_allocator<T *> >::push_back (obj);
520 obj->*indexmember = this->size ();
521 }
522
523 void insert (T *obj)
524 {
525 push_back (obj);
526 }
527
528 void insert (T &obj)
529 {
530 insert (&obj);
531 }
532
533 void erase (T *obj)
534 {
535 unsigned int pos = obj->*indexmember;
536 obj->*indexmember = 0;
537
538 if (pos < this->size ())
539 {
540 (*this)[pos - 1] = (*this)[this->size () - 1];
541 (*this)[pos - 1]->*indexmember = pos;
542 }
543
544 this->pop_back ();
545 }
546
547 void erase (T &obj)
548 {
549 erase (&obj);
550 }
551};
552
553// basically does what strncpy should do, but appends "..." to strings exceeding length
554void assign (char *dst, const char *src, int maxlen);
555
556// type-safe version of assign
557template<int N>
558inline void assign (char (&dst)[N], const char *src)
559{
560 assign ((char *)&dst, src, N);
561}
562
563typedef double tstamp;
564
565// return current time as timestamp
566tstamp now ();
567
568int similar_direction (int a, int b);
569
570// like sprintf, but returns a "static" buffer
571const char *format (const char *format, ...);
572
573#endif
574

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines