ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.11 by root, Tue Sep 12 20:55:40 2006 UTC vs.
Revision 1.59 by root, Sun Dec 16 02:50:33 2007 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
25//#define PREFER_MALLOC
26
4#if __GNUC__ >= 3 27#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 28# define is_constant(c) __builtin_constant_p (c)
29# define expect(expr,value) __builtin_expect ((expr),(value))
30# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
6#else 31#else
7# define is_constant(c) 0 32# define is_constant(c) 0
33# define expect(expr,value) (expr)
34# define prefetch(addr,rw,locality)
8#endif 35#endif
9 36
37#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
38# define decltype(x) typeof(x)
39#endif
40
41// put into ifs if you are very sure that the expression
42// is mostly true or mosty false. note that these return
43// booleans, not the expression.
44#define expect_false(expr) expect ((expr) != 0, 0)
45#define expect_true(expr) expect ((expr) != 0, 1)
46
10#include <cstddef> 47#include <cstddef>
48#include <cmath>
49#include <new>
50#include <vector>
11 51
12#include <glib.h> 52#include <glib.h>
53
54#include <shstr.h>
55#include <traits.h>
56
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr)
59
60// very ugly macro that basicaly declares and initialises a variable
61// that is in scope for the next statement only
62// works only for stuff that can be assigned 0 and converts to false
63// (note: works great for pointers)
64// most ugly macro I ever wrote
65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66
67// in range including end
68#define IN_RANGE_INC(val,beg,end) \
69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70
71// in range excluding end
72#define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74
75void fork_abort (const char *msg);
76
77// rationale for using (U) not (T) is to reduce signed/unsigned issues,
78// as a is often a constant while b is the variable. it is still a bug, though.
79template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
80template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
81template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
82
83template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
84
85template<typename T>
86static inline T
87lerp (T val, T min_in, T max_in, T min_out, T max_out)
88{
89 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
90}
91
92// lots of stuff taken from FXT
93
94/* Rotate right. This is used in various places for checksumming */
95//TODO: that sucks, use a better checksum algo
96static inline uint32_t
97rotate_right (uint32_t c, uint32_t count = 1)
98{
99 return (c << (32 - count)) | (c >> count);
100}
101
102static inline uint32_t
103rotate_left (uint32_t c, uint32_t count = 1)
104{
105 return (c >> (32 - count)) | (c << count);
106}
107
108// Return abs(a-b)
109// Both a and b must not have the most significant bit set
110static inline uint32_t
111upos_abs_diff (uint32_t a, uint32_t b)
112{
113 long d1 = b - a;
114 long d2 = (d1 & (d1 >> 31)) << 1;
115
116 return d1 - d2; // == (b - d) - (a + d);
117}
118
119// Both a and b must not have the most significant bit set
120static inline uint32_t
121upos_min (uint32_t a, uint32_t b)
122{
123 int32_t d = b - a;
124 d &= d >> 31;
125 return a + d;
126}
127
128// Both a and b must not have the most significant bit set
129static inline uint32_t
130upos_max (uint32_t a, uint32_t b)
131{
132 int32_t d = b - a;
133 d &= d >> 31;
134 return b - d;
135}
136
137// this is much faster than crossfires original algorithm
138// on modern cpus
139inline int
140isqrt (int n)
141{
142 return (int)sqrtf ((float)n);
143}
144
145// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
146#if 0
147// and has a max. error of 6 in the range -100..+100.
148#else
149// and has a max. error of 9 in the range -100..+100.
150#endif
151inline int
152idistance (int dx, int dy)
153{
154 unsigned int dx_ = abs (dx);
155 unsigned int dy_ = abs (dy);
156
157#if 0
158 return dx_ > dy_
159 ? (dx_ * 61685 + dy_ * 26870) >> 16
160 : (dy_ * 61685 + dx_ * 26870) >> 16;
161#else
162 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
163#endif
164}
165
166/*
167 * absdir(int): Returns a number between 1 and 8, which represent
168 * the "absolute" direction of a number (it actually takes care of
169 * "overflow" in previous calculations of a direction).
170 */
171inline int
172absdir (int d)
173{
174 return ((d - 1) & 7) + 1;
175}
176
177extern size_t slice_alloc; // statistics
13 178
14// makes dynamically allocated objects zero-initialised 179// makes dynamically allocated objects zero-initialised
15struct zero_initialised 180struct zero_initialised
16{ 181{
17 void *operator new (size_t s, void *p) 182 void *operator new (size_t s, void *p)
20 return p; 185 return p;
21 } 186 }
22 187
23 void *operator new (size_t s) 188 void *operator new (size_t s)
24 { 189 {
190 slice_alloc += s;
25 return g_slice_alloc0 (s); 191 return g_slice_alloc0 (s);
26 } 192 }
27 193
28 void *operator new[] (size_t s) 194 void *operator new[] (size_t s)
29 { 195 {
196 slice_alloc += s;
30 return g_slice_alloc0 (s); 197 return g_slice_alloc0 (s);
31 } 198 }
32 199
33 void operator delete (void *p, size_t s) 200 void operator delete (void *p, size_t s)
34 { 201 {
202 slice_alloc -= s;
35 g_slice_free1 (s, p); 203 g_slice_free1 (s, p);
36 } 204 }
37 205
38 void operator delete[] (void *p, size_t s) 206 void operator delete[] (void *p, size_t s)
39 { 207 {
208 slice_alloc -= s;
40 g_slice_free1 (s, p); 209 g_slice_free1 (s, p);
41 } 210 }
42}; 211};
43 212
44void throw_bad_alloc () throw (std::bad_alloc); 213void *salloc_ (int n) throw (std::bad_alloc);
45
46void *alloc (int s) throw (std::bad_alloc); 214void *salloc_ (int n, void *src) throw (std::bad_alloc);
47void dealloc (void *p, int s) throw (); 215
216// strictly the same as g_slice_alloc, but never returns 0
217template<typename T>
218inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
219
220// also copies src into the new area, like "memdup"
221// if src is 0, clears the memory
222template<typename T>
223inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
224
225// clears the memory
226template<typename T>
227inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
228
229// for symmetry
230template<typename T>
231inline void sfree (T *ptr, int n = 1) throw ()
232{
233#ifdef PREFER_MALLOC
234 free (ptr);
235#else
236 slice_alloc -= n * sizeof (T);
237 g_slice_free1 (n * sizeof (T), (void *)ptr);
238#endif
239}
48 240
49// a STL-compatible allocator that uses g_slice 241// a STL-compatible allocator that uses g_slice
50// boy, this is verbose 242// boy, this is verbose
51template<typename Tp> 243template<typename Tp>
52struct slice_allocator 244struct slice_allocator
75 pointer address (reference x) const { return &x; } 267 pointer address (reference x) const { return &x; }
76 const_pointer address (const_reference x) const { return &x; } 268 const_pointer address (const_reference x) const { return &x; }
77 269
78 pointer allocate (size_type n, const_pointer = 0) 270 pointer allocate (size_type n, const_pointer = 0)
79 { 271 {
80 return static_cast<pointer>(alloc (n * sizeof (Tp))); 272 return salloc<Tp> (n);
81 } 273 }
82 274
83 void deallocate (pointer p, size_type n) 275 void deallocate (pointer p, size_type n)
84 { 276 {
85 dealloc (static_cast<void *>(p), n); 277 sfree<Tp> (p, n);
86 } 278 }
87 279
88 size_type max_size ()const throw () 280 size_type max_size ()const throw ()
89 { 281 {
90 return size_t (-1) / sizeof (Tp); 282 return size_t (-1) / sizeof (Tp);
99 { 291 {
100 p->~Tp (); 292 p->~Tp ();
101 } 293 }
102}; 294};
103 295
296// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
297// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
298// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
299struct tausworthe_random_generator
300{
301 // generator
302 uint32_t state [4];
303
304 void operator =(const tausworthe_random_generator &src)
305 {
306 state [0] = src.state [0];
307 state [1] = src.state [1];
308 state [2] = src.state [2];
309 state [3] = src.state [3];
310 }
311
312 void seed (uint32_t seed);
313 uint32_t next ();
314
315 // uniform distribution
316 uint32_t operator ()(uint32_t num)
317 {
318 return is_constant (num)
319 ? (next () * (uint64_t)num) >> 32U
320 : get_range (num);
321 }
322
323 // return a number within (min .. max)
324 int operator () (int r_min, int r_max)
325 {
326 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
327 ? r_min + operator ()(r_max - r_min + 1)
328 : get_range (r_min, r_max);
329 }
330
331 double operator ()()
332 {
333 return this->next () / (double)0xFFFFFFFFU;
334 }
335
336protected:
337 uint32_t get_range (uint32_t r_max);
338 int get_range (int r_min, int r_max);
339};
340
341typedef tausworthe_random_generator rand_gen;
342
343extern rand_gen rndm;
344
345INTERFACE_CLASS (attachable)
104struct refcounted 346struct refcnt_base
105{ 347{
106 mutable int refcnt; 348 typedef int refcnt_t;
107 refcounted () : refcnt (0) { } 349 mutable refcnt_t ACC (RW, refcnt);
350
108 void refcnt_inc () { ++refcnt; } 351 MTH void refcnt_inc () const { ++refcnt; }
109 void refcnt_dec () { --refcnt; 352 MTH void refcnt_dec () const { --refcnt; }
110 if (refcnt < 0)abort();}//D 353
354 refcnt_base () : refcnt (0) { }
111}; 355};
356
357// to avoid branches with more advanced compilers
358extern refcnt_base::refcnt_t refcnt_dummy;
112 359
113template<class T> 360template<class T>
114struct refptr 361struct refptr
115{ 362{
363 // p if not null
364 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
365
366 void refcnt_dec ()
367 {
368 if (!is_constant (p))
369 --*refcnt_ref ();
370 else if (p)
371 --p->refcnt;
372 }
373
374 void refcnt_inc ()
375 {
376 if (!is_constant (p))
377 ++*refcnt_ref ();
378 else if (p)
379 ++p->refcnt;
380 }
381
116 T *p; 382 T *p;
117 383
118 refptr () : p(0) { } 384 refptr () : p(0) { }
119 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 385 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
120 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 386 refptr (T *p) : p(p) { refcnt_inc (); }
121 ~refptr () { if (p) p->refcnt_dec (); } 387 ~refptr () { refcnt_dec (); }
122 388
123 const refptr<T> &operator =(T *o) 389 const refptr<T> &operator =(T *o)
124 { 390 {
391 // if decrementing ever destroys we need to reverse the order here
125 if (p) p->refcnt_dec (); 392 refcnt_dec ();
126 p = o; 393 p = o;
127 if (p) p->refcnt_inc (); 394 refcnt_inc ();
128
129 return *this; 395 return *this;
130 } 396 }
131 397
132 const refptr<T> &operator =(const refptr<T> o) 398 const refptr<T> &operator =(const refptr<T> &o)
133 { 399 {
134 *this = o.p; 400 *this = o.p;
135 return *this; 401 return *this;
136 } 402 }
137 403
138 T &operator * () const { return *p; } 404 T &operator * () const { return *p; }
139 T *operator ->() const { return p; } 405 T *operator ->() const { return p; }
140 406
141 operator T *() const { return p; } 407 operator T *() const { return p; }
142}; 408};
409
410typedef refptr<maptile> maptile_ptr;
411typedef refptr<object> object_ptr;
412typedef refptr<archetype> arch_ptr;
413typedef refptr<client> client_ptr;
414typedef refptr<player> player_ptr;
143 415
144struct str_hash 416struct str_hash
145{ 417{
146 std::size_t operator ()(const char *s) const 418 std::size_t operator ()(const char *s) const
147 { 419 {
173 { 445 {
174 return !strcmp (a, b); 446 return !strcmp (a, b);
175 } 447 }
176}; 448};
177 449
178#include <vector> 450// Mostly the same as std::vector, but insert/erase can reorder
179 451// the elements, making append(=insert)/remove O(1) instead of O(n).
452//
453// NOTE: only some forms of erase are available
180template<class obj> 454template<class T>
181struct unordered_vector : std::vector<obj, slice_allocator<obj> > 455struct unordered_vector : std::vector<T, slice_allocator<T> >
182{ 456{
183 typedef typename unordered_vector::iterator iterator; 457 typedef typename unordered_vector::iterator iterator;
184 458
185 void erase (unsigned int pos) 459 void erase (unsigned int pos)
186 { 460 {
194 { 468 {
195 erase ((unsigned int )(i - this->begin ())); 469 erase ((unsigned int )(i - this->begin ()));
196 } 470 }
197}; 471};
198 472
199template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 473// This container blends advantages of linked lists
200template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 474// (efficiency) with vectors (random access) by
201template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 475// by using an unordered vector and storing the vector
476// index inside the object.
477//
478// + memory-efficient on most 64 bit archs
479// + O(1) insert/remove
480// + free unique (but varying) id for inserted objects
481// + cache-friendly iteration
482// - only works for pointers to structs
483//
484// NOTE: only some forms of erase/insert are available
485typedef int object_vector_index;
202 486
203template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 487template<class T, object_vector_index T::*indexmember>
488struct object_vector : std::vector<T *, slice_allocator<T *> >
489{
490 typedef typename object_vector::iterator iterator;
491
492 bool contains (const T *obj) const
493 {
494 return obj->*indexmember;
495 }
496
497 iterator find (const T *obj)
498 {
499 return obj->*indexmember
500 ? this->begin () + obj->*indexmember - 1
501 : this->end ();
502 }
503
504 void push_back (T *obj)
505 {
506 std::vector<T *, slice_allocator<T *> >::push_back (obj);
507 obj->*indexmember = this->size ();
508 }
509
510 void insert (T *obj)
511 {
512 push_back (obj);
513 }
514
515 void insert (T &obj)
516 {
517 insert (&obj);
518 }
519
520 void erase (T *obj)
521 {
522 unsigned int pos = obj->*indexmember;
523 obj->*indexmember = 0;
524
525 if (pos < this->size ())
526 {
527 (*this)[pos - 1] = (*this)[this->size () - 1];
528 (*this)[pos - 1]->*indexmember = pos;
529 }
530
531 this->pop_back ();
532 }
533
534 void erase (T &obj)
535 {
536 erase (&obj);
537 }
538};
204 539
205// basically does what strncpy should do, but appends "..." to strings exceeding length 540// basically does what strncpy should do, but appends "..." to strings exceeding length
206void assign (char *dst, const char *src, int maxlen); 541void assign (char *dst, const char *src, int maxlen);
207 542
208// type-safe version of assign 543// type-safe version of assign
210inline void assign (char (&dst)[N], const char *src) 545inline void assign (char (&dst)[N], const char *src)
211{ 546{
212 assign ((char *)&dst, src, N); 547 assign ((char *)&dst, src, N);
213} 548}
214 549
550typedef double tstamp;
551
552// return current time as timestamp
553tstamp now ();
554
555int similar_direction (int a, int b);
556
557// like sprintf, but returns a "static" buffer
558const char *format (const char *format, ...);
559
215#endif 560#endif
216 561

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines