ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.65 by root, Tue Apr 1 19:50:38 2008 UTC vs.
Revision 1.86 by root, Sat Jan 3 01:04:19 2009 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Deliantra is free software: you can redistribute it and/or modify 6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by 7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or 8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version. 9 * (at your option) any later version.
20 */ 20 */
21 21
22#ifndef UTIL_H__ 22#ifndef UTIL_H__
23#define UTIL_H__ 23#define UTIL_H__
24 24
25#define DEBUG_SALLOC 0 25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define PREFER_MALLOC 0 26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
27 28
28#if __GNUC__ >= 3 29#if __GNUC__ >= 3
29# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
30# define expect(expr,value) __builtin_expect ((expr),(value)) 31# define expect(expr,value) __builtin_expect ((expr),(value))
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) 32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33# define noinline __attribute__((__noinline__))
32#else 34#else
33# define is_constant(c) 0 35# define is_constant(c) 0
34# define expect(expr,value) (expr) 36# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality) 37# define prefetch(addr,rw,locality)
38# define noinline
36#endif 39#endif
37 40
38#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4) 41#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
39# define decltype(x) typeof(x) 42# define decltype(x) typeof(x)
40#endif 43#endif
41 44
42// put into ifs if you are very sure that the expression 45// put into ifs if you are very sure that the expression
43// is mostly true or mosty false. note that these return 46// is mostly true or mosty false. note that these return
44// booleans, not the expression. 47// booleans, not the expression.
45#define expect_false(expr) expect ((expr) != 0, 0) 48#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
46#define expect_true(expr) expect ((expr) != 0, 1) 49#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
50
51#include <pthread.h>
47 52
48#include <cstddef> 53#include <cstddef>
49#include <cmath> 54#include <cmath>
50#include <new> 55#include <new>
51#include <vector> 56#include <vector>
60# define g_slice_alloc(s) debug_slice_alloc(s) 65# define g_slice_alloc(s) debug_slice_alloc(s)
61# define g_slice_free1(s,p) debug_slice_free1(s,p) 66# define g_slice_free1(s,p) debug_slice_free1(s,p)
62void *g_slice_alloc (unsigned long size); 67void *g_slice_alloc (unsigned long size);
63void *g_slice_alloc0 (unsigned long size); 68void *g_slice_alloc0 (unsigned long size);
64void g_slice_free1 (unsigned long size, void *ptr); 69void g_slice_free1 (unsigned long size, void *ptr);
70#elif PREFER_MALLOC
71# define g_slice_alloc0(s) calloc (1, (s))
72# define g_slice_alloc(s) malloc ((s))
73# define g_slice_free1(s,p) free ((p))
65#endif 74#endif
66 75
67// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 76// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
68#define auto(var,expr) decltype(expr) var = (expr) 77#define auto(var,expr) decltype(expr) var = (expr)
69 78
70// very ugly macro that basicaly declares and initialises a variable 79// very ugly macro that basically declares and initialises a variable
71// that is in scope for the next statement only 80// that is in scope for the next statement only
72// works only for stuff that can be assigned 0 and converts to false 81// works only for stuff that can be assigned 0 and converts to false
73// (note: works great for pointers) 82// (note: works great for pointers)
74// most ugly macro I ever wrote 83// most ugly macro I ever wrote
75#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 84#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
80 89
81// in range excluding end 90// in range excluding end
82#define IN_RANGE_EXC(val,beg,end) \ 91#define IN_RANGE_EXC(val,beg,end) \
83 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 92 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
84 93
94void cleanup (const char *cause, bool make_core = false);
85void fork_abort (const char *msg); 95void fork_abort (const char *msg);
86 96
87// rationale for using (U) not (T) is to reduce signed/unsigned issues, 97// rationale for using (U) not (T) is to reduce signed/unsigned issues,
88// as a is often a constant while b is the variable. it is still a bug, though. 98// as a is often a constant while b is the variable. it is still a bug, though.
89template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 99template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
90template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 100template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
91template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 101template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
92 102
103template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
104template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
105template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
106
93template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 107template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
94 108
95template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); } 109template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
96template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); } 110template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
97 111
112// sign returns -1 or +1
113template<typename T>
114static inline T sign (T v) { return v < 0 ? -1 : +1; }
115// relies on 2c representation
116template<>
117inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
118
119// sign0 returns -1, 0 or +1
120template<typename T>
121static inline T sign0 (T v) { return v ? sign (v) : 0; }
122
123// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
125// div, round-up
126template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
127// div, round-down
128template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
129
98template<typename T> 130template<typename T>
99static inline T 131static inline T
100lerp (T val, T min_in, T max_in, T min_out, T max_out) 132lerp (T val, T min_in, T max_in, T min_out, T max_out)
101{ 133{
102 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 134 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
135}
136
137// lerp, round-down
138template<typename T>
139static inline T
140lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
141{
142 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
143}
144
145// lerp, round-up
146template<typename T>
147static inline T
148lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
149{
150 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
103} 151}
104 152
105// lots of stuff taken from FXT 153// lots of stuff taken from FXT
106 154
107/* Rotate right. This is used in various places for checksumming */ 155/* Rotate right. This is used in various places for checksumming */
185absdir (int d) 233absdir (int d)
186{ 234{
187 return ((d - 1) & 7) + 1; 235 return ((d - 1) & 7) + 1;
188} 236}
189 237
190extern size_t slice_alloc; // statistics 238extern ssize_t slice_alloc; // statistics
239
240void *salloc_ (int n) throw (std::bad_alloc);
241void *salloc_ (int n, void *src) throw (std::bad_alloc);
242
243// strictly the same as g_slice_alloc, but never returns 0
244template<typename T>
245inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
246
247// also copies src into the new area, like "memdup"
248// if src is 0, clears the memory
249template<typename T>
250inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
251
252// clears the memory
253template<typename T>
254inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
255
256// for symmetry
257template<typename T>
258inline void sfree (T *ptr, int n = 1) throw ()
259{
260 if (expect_true (ptr))
261 {
262 slice_alloc -= n * sizeof (T);
263 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
264 g_slice_free1 (n * sizeof (T), (void *)ptr);
265 assert (slice_alloc >= 0);//D
266 }
267}
268
269// nulls the pointer
270template<typename T>
271inline void sfree0 (T *&ptr, int n = 1) throw ()
272{
273 sfree<T> (ptr, n);
274 ptr = 0;
275}
191 276
192// makes dynamically allocated objects zero-initialised 277// makes dynamically allocated objects zero-initialised
193struct zero_initialised 278struct zero_initialised
194{ 279{
195 void *operator new (size_t s, void *p) 280 void *operator new (size_t s, void *p)
198 return p; 283 return p;
199 } 284 }
200 285
201 void *operator new (size_t s) 286 void *operator new (size_t s)
202 { 287 {
203 slice_alloc += s;
204 return g_slice_alloc0 (s); 288 return salloc0<char> (s);
205 } 289 }
206 290
207 void *operator new[] (size_t s) 291 void *operator new[] (size_t s)
208 { 292 {
209 slice_alloc += s;
210 return g_slice_alloc0 (s); 293 return salloc0<char> (s);
211 } 294 }
212 295
213 void operator delete (void *p, size_t s) 296 void operator delete (void *p, size_t s)
214 { 297 {
215 slice_alloc -= s; 298 sfree ((char *)p, s);
216 g_slice_free1 (s, p);
217 } 299 }
218 300
219 void operator delete[] (void *p, size_t s) 301 void operator delete[] (void *p, size_t s)
220 { 302 {
221 slice_alloc -= s; 303 sfree ((char *)p, s);
222 g_slice_free1 (s, p);
223 } 304 }
224}; 305};
225 306
226void *salloc_ (int n) throw (std::bad_alloc); 307// makes dynamically allocated objects zero-initialised
227void *salloc_ (int n, void *src) throw (std::bad_alloc); 308struct slice_allocated
228
229// strictly the same as g_slice_alloc, but never returns 0
230template<typename T>
231inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
232
233// also copies src into the new area, like "memdup"
234// if src is 0, clears the memory
235template<typename T>
236inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
237
238// clears the memory
239template<typename T>
240inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
241
242// for symmetry
243template<typename T>
244inline void sfree (T *ptr, int n = 1) throw ()
245{ 309{
246#if PREFER_MALLOC 310 void *operator new (size_t s, void *p)
247 free (ptr); 311 {
248#else 312 return p;
249 slice_alloc -= n * sizeof (T); 313 }
250 g_slice_free1 (n * sizeof (T), (void *)ptr); 314
251#endif 315 void *operator new (size_t s)
252} 316 {
317 return salloc<char> (s);
318 }
319
320 void *operator new[] (size_t s)
321 {
322 return salloc<char> (s);
323 }
324
325 void operator delete (void *p, size_t s)
326 {
327 sfree ((char *)p, s);
328 }
329
330 void operator delete[] (void *p, size_t s)
331 {
332 sfree ((char *)p, s);
333 }
334};
253 335
254// a STL-compatible allocator that uses g_slice 336// a STL-compatible allocator that uses g_slice
255// boy, this is verbose 337// boy, this is verbose
256template<typename Tp> 338template<typename Tp>
257struct slice_allocator 339struct slice_allocator
309// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 391// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
310// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 392// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
311// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 393// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
312struct tausworthe_random_generator 394struct tausworthe_random_generator
313{ 395{
314 // generator
315 uint32_t state [4]; 396 uint32_t state [4];
316 397
317 void operator =(const tausworthe_random_generator &src) 398 void operator =(const tausworthe_random_generator &src)
318 { 399 {
319 state [0] = src.state [0]; 400 state [0] = src.state [0];
322 state [3] = src.state [3]; 403 state [3] = src.state [3];
323 } 404 }
324 405
325 void seed (uint32_t seed); 406 void seed (uint32_t seed);
326 uint32_t next (); 407 uint32_t next ();
408};
327 409
328 // uniform distribution 410// Xorshift RNGs, George Marsaglia
411// http://www.jstatsoft.org/v08/i14/paper
412// this one is about 40% faster than the tausworthe one above (i.e. not much),
413// despite the inlining, and has the issue of only creating 2**32-1 numbers.
414// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
415struct xorshift_random_generator
416{
417 uint32_t x, y;
418
419 void operator =(const xorshift_random_generator &src)
420 {
421 x = src.x;
422 y = src.y;
423 }
424
425 void seed (uint32_t seed)
426 {
427 x = seed;
428 y = seed * 69069U;
429 }
430
431 uint32_t next ()
432 {
433 uint32_t t = x ^ (x << 10);
434 x = y;
435 y = y ^ (y >> 13) ^ t ^ (t >> 10);
436 return y;
437 }
438};
439
440template<class generator>
441struct random_number_generator : generator
442{
443 // uniform distribution, 0 .. max (0, num - 1)
329 uint32_t operator ()(uint32_t num) 444 uint32_t operator ()(uint32_t num)
330 { 445 {
331 return is_constant (num) 446 return !is_constant (num) ? get_range (num) // non-constant
332 ? (next () * (uint64_t)num) >> 32U 447 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
333 : get_range (num); 448 : this->next () & (num - 1); // constant, power-of-two
334 } 449 }
335 450
336 // return a number within (min .. max) 451 // return a number within (min .. max)
337 int operator () (int r_min, int r_max) 452 int operator () (int r_min, int r_max)
338 { 453 {
349protected: 464protected:
350 uint32_t get_range (uint32_t r_max); 465 uint32_t get_range (uint32_t r_max);
351 int get_range (int r_min, int r_max); 466 int get_range (int r_min, int r_max);
352}; 467};
353 468
354typedef tausworthe_random_generator rand_gen; 469typedef random_number_generator<tausworthe_random_generator> rand_gen;
355 470
356extern rand_gen rndm; 471extern rand_gen rndm, rmg_rndm;
357 472
358INTERFACE_CLASS (attachable) 473INTERFACE_CLASS (attachable)
359struct refcnt_base 474struct refcnt_base
360{ 475{
361 typedef int refcnt_t; 476 typedef int refcnt_t;
428 543
429struct str_hash 544struct str_hash
430{ 545{
431 std::size_t operator ()(const char *s) const 546 std::size_t operator ()(const char *s) const
432 { 547 {
433 unsigned long hash = 0; 548#if 0
549 uint32_t hash = 0;
434 550
435 /* use the one-at-a-time hash function, which supposedly is 551 /* use the one-at-a-time hash function, which supposedly is
436 * better than the djb2-like one used by perl5.005, but 552 * better than the djb2-like one used by perl5.005, but
437 * certainly is better then the bug used here before. 553 * certainly is better then the bug used here before.
438 * see http://burtleburtle.net/bob/hash/doobs.html 554 * see http://burtleburtle.net/bob/hash/doobs.html
445 } 561 }
446 562
447 hash += hash << 3; 563 hash += hash << 3;
448 hash ^= hash >> 11; 564 hash ^= hash >> 11;
449 hash += hash << 15; 565 hash += hash << 15;
566#else
567 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
568 // it is about twice as fast as the one-at-a-time one,
569 // with good distribution.
570 // FNV-1a is faster on many cpus because the multiplication
571 // runs concurrent with the looping logic.
572 uint32_t hash = 2166136261;
573
574 while (*s)
575 hash = (hash ^ *s++) * 16777619;
576#endif
450 577
451 return hash; 578 return hash;
452 } 579 }
453}; 580};
454 581
568int similar_direction (int a, int b); 695int similar_direction (int a, int b);
569 696
570// like sprintf, but returns a "static" buffer 697// like sprintf, but returns a "static" buffer
571const char *format (const char *format, ...); 698const char *format (const char *format, ...);
572 699
700/////////////////////////////////////////////////////////////////////////////
701// threads, very very thin wrappers around pthreads
702
703struct thread
704{
705 pthread_t id;
706
707 void start (void *(*start_routine)(void *), void *arg = 0);
708
709 void cancel ()
710 {
711 pthread_cancel (id);
712 }
713
714 void *join ()
715 {
716 void *ret;
717
718 if (pthread_join (id, &ret))
719 cleanup ("pthread_join failed", 1);
720
721 return ret;
722 }
723};
724
725// note that mutexes are not classes
726typedef pthread_mutex_t smutex;
727
728#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
729 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
730#else
731 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
573#endif 732#endif
574 733
734#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
735#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
736#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
737
738typedef pthread_cond_t scond;
739
740#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
741#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
742#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
743#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
744
745#endif
746

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines