ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.11 by root, Tue Sep 12 20:55:40 2006 UTC vs.
Revision 1.66 by root, Wed Apr 2 11:13:55 2008 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
25#define DEBUG_SALLOC 0
26#define PREFER_MALLOC 0
27
4#if __GNUC__ >= 3 28#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 29# define is_constant(c) __builtin_constant_p (c)
30# define expect(expr,value) __builtin_expect ((expr),(value))
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
6#else 32#else
7# define is_constant(c) 0 33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
8#endif 36#endif
37
38#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
39# define decltype(x) typeof(x)
40#endif
41
42// put into ifs if you are very sure that the expression
43// is mostly true or mosty false. note that these return
44// booleans, not the expression.
45#define expect_false(expr) expect ((expr) != 0, 0)
46#define expect_true(expr) expect ((expr) != 0, 1)
47
48#include <pthread.h>
9 49
10#include <cstddef> 50#include <cstddef>
51#include <cmath>
52#include <new>
53#include <vector>
11 54
12#include <glib.h> 55#include <glib.h>
56
57#include <shstr.h>
58#include <traits.h>
59
60#if DEBUG_SALLOC
61# define g_slice_alloc0(s) debug_slice_alloc0(s)
62# define g_slice_alloc(s) debug_slice_alloc(s)
63# define g_slice_free1(s,p) debug_slice_free1(s,p)
64void *g_slice_alloc (unsigned long size);
65void *g_slice_alloc0 (unsigned long size);
66void g_slice_free1 (unsigned long size, void *ptr);
67#endif
68
69// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
70#define auto(var,expr) decltype(expr) var = (expr)
71
72// very ugly macro that basicaly declares and initialises a variable
73// that is in scope for the next statement only
74// works only for stuff that can be assigned 0 and converts to false
75// (note: works great for pointers)
76// most ugly macro I ever wrote
77#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
78
79// in range including end
80#define IN_RANGE_INC(val,beg,end) \
81 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
82
83// in range excluding end
84#define IN_RANGE_EXC(val,beg,end) \
85 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
86
87void cleanup (const char *cause, bool make_core = false);
88void fork_abort (const char *msg);
89
90// rationale for using (U) not (T) is to reduce signed/unsigned issues,
91// as a is often a constant while b is the variable. it is still a bug, though.
92template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
93template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
94template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
95
96template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
97
98template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
99template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
100
101template<typename T>
102static inline T
103lerp (T val, T min_in, T max_in, T min_out, T max_out)
104{
105 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
106}
107
108// lots of stuff taken from FXT
109
110/* Rotate right. This is used in various places for checksumming */
111//TODO: that sucks, use a better checksum algo
112static inline uint32_t
113rotate_right (uint32_t c, uint32_t count = 1)
114{
115 return (c << (32 - count)) | (c >> count);
116}
117
118static inline uint32_t
119rotate_left (uint32_t c, uint32_t count = 1)
120{
121 return (c >> (32 - count)) | (c << count);
122}
123
124// Return abs(a-b)
125// Both a and b must not have the most significant bit set
126static inline uint32_t
127upos_abs_diff (uint32_t a, uint32_t b)
128{
129 long d1 = b - a;
130 long d2 = (d1 & (d1 >> 31)) << 1;
131
132 return d1 - d2; // == (b - d) - (a + d);
133}
134
135// Both a and b must not have the most significant bit set
136static inline uint32_t
137upos_min (uint32_t a, uint32_t b)
138{
139 int32_t d = b - a;
140 d &= d >> 31;
141 return a + d;
142}
143
144// Both a and b must not have the most significant bit set
145static inline uint32_t
146upos_max (uint32_t a, uint32_t b)
147{
148 int32_t d = b - a;
149 d &= d >> 31;
150 return b - d;
151}
152
153// this is much faster than crossfires original algorithm
154// on modern cpus
155inline int
156isqrt (int n)
157{
158 return (int)sqrtf ((float)n);
159}
160
161// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
162#if 0
163// and has a max. error of 6 in the range -100..+100.
164#else
165// and has a max. error of 9 in the range -100..+100.
166#endif
167inline int
168idistance (int dx, int dy)
169{
170 unsigned int dx_ = abs (dx);
171 unsigned int dy_ = abs (dy);
172
173#if 0
174 return dx_ > dy_
175 ? (dx_ * 61685 + dy_ * 26870) >> 16
176 : (dy_ * 61685 + dx_ * 26870) >> 16;
177#else
178 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
179#endif
180}
181
182/*
183 * absdir(int): Returns a number between 1 and 8, which represent
184 * the "absolute" direction of a number (it actually takes care of
185 * "overflow" in previous calculations of a direction).
186 */
187inline int
188absdir (int d)
189{
190 return ((d - 1) & 7) + 1;
191}
192
193extern size_t slice_alloc; // statistics
13 194
14// makes dynamically allocated objects zero-initialised 195// makes dynamically allocated objects zero-initialised
15struct zero_initialised 196struct zero_initialised
16{ 197{
17 void *operator new (size_t s, void *p) 198 void *operator new (size_t s, void *p)
20 return p; 201 return p;
21 } 202 }
22 203
23 void *operator new (size_t s) 204 void *operator new (size_t s)
24 { 205 {
206 slice_alloc += s;
25 return g_slice_alloc0 (s); 207 return g_slice_alloc0 (s);
26 } 208 }
27 209
28 void *operator new[] (size_t s) 210 void *operator new[] (size_t s)
29 { 211 {
212 slice_alloc += s;
30 return g_slice_alloc0 (s); 213 return g_slice_alloc0 (s);
31 } 214 }
32 215
33 void operator delete (void *p, size_t s) 216 void operator delete (void *p, size_t s)
34 { 217 {
218 slice_alloc -= s;
35 g_slice_free1 (s, p); 219 g_slice_free1 (s, p);
36 } 220 }
37 221
38 void operator delete[] (void *p, size_t s) 222 void operator delete[] (void *p, size_t s)
39 { 223 {
224 slice_alloc -= s;
40 g_slice_free1 (s, p); 225 g_slice_free1 (s, p);
41 } 226 }
42}; 227};
43 228
44void throw_bad_alloc () throw (std::bad_alloc); 229void *salloc_ (int n) throw (std::bad_alloc);
45
46void *alloc (int s) throw (std::bad_alloc); 230void *salloc_ (int n, void *src) throw (std::bad_alloc);
47void dealloc (void *p, int s) throw (); 231
232// strictly the same as g_slice_alloc, but never returns 0
233template<typename T>
234inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
235
236// also copies src into the new area, like "memdup"
237// if src is 0, clears the memory
238template<typename T>
239inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
240
241// clears the memory
242template<typename T>
243inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
244
245// for symmetry
246template<typename T>
247inline void sfree (T *ptr, int n = 1) throw ()
248{
249#if PREFER_MALLOC
250 free (ptr);
251#else
252 slice_alloc -= n * sizeof (T);
253 g_slice_free1 (n * sizeof (T), (void *)ptr);
254#endif
255}
48 256
49// a STL-compatible allocator that uses g_slice 257// a STL-compatible allocator that uses g_slice
50// boy, this is verbose 258// boy, this is verbose
51template<typename Tp> 259template<typename Tp>
52struct slice_allocator 260struct slice_allocator
64 { 272 {
65 typedef slice_allocator<U> other; 273 typedef slice_allocator<U> other;
66 }; 274 };
67 275
68 slice_allocator () throw () { } 276 slice_allocator () throw () { }
69 slice_allocator (const slice_allocator &o) throw () { } 277 slice_allocator (const slice_allocator &) throw () { }
70 template<typename Tp2> 278 template<typename Tp2>
71 slice_allocator (const slice_allocator<Tp2> &) throw () { } 279 slice_allocator (const slice_allocator<Tp2> &) throw () { }
72 280
73 ~slice_allocator () { } 281 ~slice_allocator () { }
74 282
75 pointer address (reference x) const { return &x; } 283 pointer address (reference x) const { return &x; }
76 const_pointer address (const_reference x) const { return &x; } 284 const_pointer address (const_reference x) const { return &x; }
77 285
78 pointer allocate (size_type n, const_pointer = 0) 286 pointer allocate (size_type n, const_pointer = 0)
79 { 287 {
80 return static_cast<pointer>(alloc (n * sizeof (Tp))); 288 return salloc<Tp> (n);
81 } 289 }
82 290
83 void deallocate (pointer p, size_type n) 291 void deallocate (pointer p, size_type n)
84 { 292 {
85 dealloc (static_cast<void *>(p), n); 293 sfree<Tp> (p, n);
86 } 294 }
87 295
88 size_type max_size ()const throw () 296 size_type max_size () const throw ()
89 { 297 {
90 return size_t (-1) / sizeof (Tp); 298 return size_t (-1) / sizeof (Tp);
91 } 299 }
92 300
93 void construct (pointer p, const Tp &val) 301 void construct (pointer p, const Tp &val)
99 { 307 {
100 p->~Tp (); 308 p->~Tp ();
101 } 309 }
102}; 310};
103 311
312// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
313// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
314// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
315struct tausworthe_random_generator
316{
317 // generator
318 uint32_t state [4];
319
320 void operator =(const tausworthe_random_generator &src)
321 {
322 state [0] = src.state [0];
323 state [1] = src.state [1];
324 state [2] = src.state [2];
325 state [3] = src.state [3];
326 }
327
328 void seed (uint32_t seed);
329 uint32_t next ();
330
331 // uniform distribution
332 uint32_t operator ()(uint32_t num)
333 {
334 return is_constant (num)
335 ? (next () * (uint64_t)num) >> 32U
336 : get_range (num);
337 }
338
339 // return a number within (min .. max)
340 int operator () (int r_min, int r_max)
341 {
342 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
343 ? r_min + operator ()(r_max - r_min + 1)
344 : get_range (r_min, r_max);
345 }
346
347 double operator ()()
348 {
349 return this->next () / (double)0xFFFFFFFFU;
350 }
351
352protected:
353 uint32_t get_range (uint32_t r_max);
354 int get_range (int r_min, int r_max);
355};
356
357typedef tausworthe_random_generator rand_gen;
358
359extern rand_gen rndm;
360
361INTERFACE_CLASS (attachable)
104struct refcounted 362struct refcnt_base
105{ 363{
106 mutable int refcnt; 364 typedef int refcnt_t;
107 refcounted () : refcnt (0) { } 365 mutable refcnt_t ACC (RW, refcnt);
366
108 void refcnt_inc () { ++refcnt; } 367 MTH void refcnt_inc () const { ++refcnt; }
109 void refcnt_dec () { --refcnt; 368 MTH void refcnt_dec () const { --refcnt; }
110 if (refcnt < 0)abort();}//D 369
370 refcnt_base () : refcnt (0) { }
111}; 371};
372
373// to avoid branches with more advanced compilers
374extern refcnt_base::refcnt_t refcnt_dummy;
112 375
113template<class T> 376template<class T>
114struct refptr 377struct refptr
115{ 378{
379 // p if not null
380 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
381
382 void refcnt_dec ()
383 {
384 if (!is_constant (p))
385 --*refcnt_ref ();
386 else if (p)
387 --p->refcnt;
388 }
389
390 void refcnt_inc ()
391 {
392 if (!is_constant (p))
393 ++*refcnt_ref ();
394 else if (p)
395 ++p->refcnt;
396 }
397
116 T *p; 398 T *p;
117 399
118 refptr () : p(0) { } 400 refptr () : p(0) { }
119 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 401 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
120 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 402 refptr (T *p) : p(p) { refcnt_inc (); }
121 ~refptr () { if (p) p->refcnt_dec (); } 403 ~refptr () { refcnt_dec (); }
122 404
123 const refptr<T> &operator =(T *o) 405 const refptr<T> &operator =(T *o)
124 { 406 {
407 // if decrementing ever destroys we need to reverse the order here
125 if (p) p->refcnt_dec (); 408 refcnt_dec ();
126 p = o; 409 p = o;
127 if (p) p->refcnt_inc (); 410 refcnt_inc ();
128
129 return *this; 411 return *this;
130 } 412 }
131 413
132 const refptr<T> &operator =(const refptr<T> o) 414 const refptr<T> &operator =(const refptr<T> &o)
133 { 415 {
134 *this = o.p; 416 *this = o.p;
135 return *this; 417 return *this;
136 } 418 }
137 419
138 T &operator * () const { return *p; } 420 T &operator * () const { return *p; }
139 T *operator ->() const { return p; } 421 T *operator ->() const { return p; }
140 422
141 operator T *() const { return p; } 423 operator T *() const { return p; }
142}; 424};
425
426typedef refptr<maptile> maptile_ptr;
427typedef refptr<object> object_ptr;
428typedef refptr<archetype> arch_ptr;
429typedef refptr<client> client_ptr;
430typedef refptr<player> player_ptr;
143 431
144struct str_hash 432struct str_hash
145{ 433{
146 std::size_t operator ()(const char *s) const 434 std::size_t operator ()(const char *s) const
147 { 435 {
173 { 461 {
174 return !strcmp (a, b); 462 return !strcmp (a, b);
175 } 463 }
176}; 464};
177 465
178#include <vector> 466// Mostly the same as std::vector, but insert/erase can reorder
179 467// the elements, making append(=insert)/remove O(1) instead of O(n).
468//
469// NOTE: only some forms of erase are available
180template<class obj> 470template<class T>
181struct unordered_vector : std::vector<obj, slice_allocator<obj> > 471struct unordered_vector : std::vector<T, slice_allocator<T> >
182{ 472{
183 typedef typename unordered_vector::iterator iterator; 473 typedef typename unordered_vector::iterator iterator;
184 474
185 void erase (unsigned int pos) 475 void erase (unsigned int pos)
186 { 476 {
194 { 484 {
195 erase ((unsigned int )(i - this->begin ())); 485 erase ((unsigned int )(i - this->begin ()));
196 } 486 }
197}; 487};
198 488
199template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 489// This container blends advantages of linked lists
200template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 490// (efficiency) with vectors (random access) by
201template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 491// by using an unordered vector and storing the vector
492// index inside the object.
493//
494// + memory-efficient on most 64 bit archs
495// + O(1) insert/remove
496// + free unique (but varying) id for inserted objects
497// + cache-friendly iteration
498// - only works for pointers to structs
499//
500// NOTE: only some forms of erase/insert are available
501typedef int object_vector_index;
202 502
203template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 503template<class T, object_vector_index T::*indexmember>
504struct object_vector : std::vector<T *, slice_allocator<T *> >
505{
506 typedef typename object_vector::iterator iterator;
507
508 bool contains (const T *obj) const
509 {
510 return obj->*indexmember;
511 }
512
513 iterator find (const T *obj)
514 {
515 return obj->*indexmember
516 ? this->begin () + obj->*indexmember - 1
517 : this->end ();
518 }
519
520 void push_back (T *obj)
521 {
522 std::vector<T *, slice_allocator<T *> >::push_back (obj);
523 obj->*indexmember = this->size ();
524 }
525
526 void insert (T *obj)
527 {
528 push_back (obj);
529 }
530
531 void insert (T &obj)
532 {
533 insert (&obj);
534 }
535
536 void erase (T *obj)
537 {
538 unsigned int pos = obj->*indexmember;
539 obj->*indexmember = 0;
540
541 if (pos < this->size ())
542 {
543 (*this)[pos - 1] = (*this)[this->size () - 1];
544 (*this)[pos - 1]->*indexmember = pos;
545 }
546
547 this->pop_back ();
548 }
549
550 void erase (T &obj)
551 {
552 erase (&obj);
553 }
554};
204 555
205// basically does what strncpy should do, but appends "..." to strings exceeding length 556// basically does what strncpy should do, but appends "..." to strings exceeding length
206void assign (char *dst, const char *src, int maxlen); 557void assign (char *dst, const char *src, int maxlen);
207 558
208// type-safe version of assign 559// type-safe version of assign
210inline void assign (char (&dst)[N], const char *src) 561inline void assign (char (&dst)[N], const char *src)
211{ 562{
212 assign ((char *)&dst, src, N); 563 assign ((char *)&dst, src, N);
213} 564}
214 565
215#endif 566typedef double tstamp;
216 567
568// return current time as timestamp
569tstamp now ();
570
571int similar_direction (int a, int b);
572
573// like sprintf, but returns a "static" buffer
574const char *format (const char *format, ...);
575
576/////////////////////////////////////////////////////////////////////////////
577// threads, very very thin wrappers around pthreads
578
579struct thread
580{
581 pthread_t id;
582
583 void start (void *(*start_routine)(void *), void *arg = 0);
584
585 void cancel ()
586 {
587 pthread_cancel (id);
588 }
589
590 void *join ()
591 {
592 void *ret;
593
594 if (pthread_join (id, &ret))
595 cleanup ("pthread_join failed", 1);
596
597 return ret;
598 }
599};
600
601// note that mutexes are not classes
602typedef pthread_mutex_t smutex;
603
604#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
605 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
606#else
607 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
608#endif
609
610#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
611#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
612#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
613
614#endif
615

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines