ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.35 by root, Fri Jan 19 22:47:57 2007 UTC vs.
Revision 1.78 by root, Thu Dec 4 03:48:19 2008 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
4#if __GNUC__ >= 3 29#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
6#else 33#else
7# define is_constant(c) 0 34# define is_constant(c) 0
35# define expect(expr,value) (expr)
36# define prefetch(addr,rw,locality)
8#endif 37#endif
38
39#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40# define decltype(x) typeof(x)
41#endif
42
43// put into ifs if you are very sure that the expression
44// is mostly true or mosty false. note that these return
45// booleans, not the expression.
46#define expect_false(expr) expect ((expr) != 0, 0)
47#define expect_true(expr) expect ((expr) != 0, 1)
48
49#include <pthread.h>
9 50
10#include <cstddef> 51#include <cstddef>
11#include <cmath> 52#include <cmath>
12#include <new> 53#include <new>
13#include <vector> 54#include <vector>
15#include <glib.h> 56#include <glib.h>
16 57
17#include <shstr.h> 58#include <shstr.h>
18#include <traits.h> 59#include <traits.h>
19 60
61#if DEBUG_SALLOC
62# define g_slice_alloc0(s) debug_slice_alloc0(s)
63# define g_slice_alloc(s) debug_slice_alloc(s)
64# define g_slice_free1(s,p) debug_slice_free1(s,p)
65void *g_slice_alloc (unsigned long size);
66void *g_slice_alloc0 (unsigned long size);
67void g_slice_free1 (unsigned long size, void *ptr);
68#elif PREFER_MALLOC
69# define g_slice_alloc0(s) calloc (1, (s))
70# define g_slice_alloc(s) malloc ((s))
71# define g_slice_free1(s,p) free ((p))
72#endif
73
20// use a gcc extension for auto declarations until ISO C++ sanctifies them 74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
21#define AUTODECL(var,expr) typeof(expr) var = (expr) 75#define auto(var,expr) decltype(expr) var = (expr)
22 76
23// very ugly macro that basicaly declares and initialises a variable 77// very ugly macro that basicaly declares and initialises a variable
24// that is in scope for the next statement only 78// that is in scope for the next statement only
25// works only for stuff that can be assigned 0 and converts to false 79// works only for stuff that can be assigned 0 and converts to false
26// (note: works great for pointers) 80// (note: works great for pointers)
27// most ugly macro I ever wrote 81// most ugly macro I ever wrote
28#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 82#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
29 83
30// in range including end 84// in range including end
31#define IN_RANGE_INC(val,beg,end) \ 85#define IN_RANGE_INC(val,beg,end) \
32 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
33 87
34// in range excluding end 88// in range excluding end
35#define IN_RANGE_EXC(val,beg,end) \ 89#define IN_RANGE_EXC(val,beg,end) \
36 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
37 91
92void cleanup (const char *cause, bool make_core = false);
38void fork_abort (const char *msg); 93void fork_abort (const char *msg);
39 94
40// rationale for using (U) not (T) is to reduce signed/unsigned issues, 95// rationale for using (U) not (T) is to reduce signed/unsigned issues,
41// as a is often a constant while b is the variable. it is still a bug, though. 96// as a is often a constant while b is the variable. it is still a bug, though.
42template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
43template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
44template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
45 100
101template<typename T> static inline void min_it (T &v, T m) { v = min (v, m); }
102template<typename T> static inline void max_it (T &v, T m) { v = max (v, m); }
103template<typename T> static inline void clamp_it (T &v, T a, T b) { v = clamp (v, a, b); }
104
46template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 105template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106
107template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109
110// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
111template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
112// div, round-up
113template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
114// div, round-down
115template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
116
117template<typename T>
118static inline T
119lerp (T val, T min_in, T max_in, T min_out, T max_out)
120{
121 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
122}
123
124// lerp, round-down
125template<typename T>
126static inline T
127lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
128{
129 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
130}
131
132// lerp, round-up
133template<typename T>
134static inline T
135lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
136{
137 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
138}
139
140// lots of stuff taken from FXT
141
142/* Rotate right. This is used in various places for checksumming */
143//TODO: that sucks, use a better checksum algo
144static inline uint32_t
145rotate_right (uint32_t c, uint32_t count = 1)
146{
147 return (c << (32 - count)) | (c >> count);
148}
149
150static inline uint32_t
151rotate_left (uint32_t c, uint32_t count = 1)
152{
153 return (c >> (32 - count)) | (c << count);
154}
155
156// Return abs(a-b)
157// Both a and b must not have the most significant bit set
158static inline uint32_t
159upos_abs_diff (uint32_t a, uint32_t b)
160{
161 long d1 = b - a;
162 long d2 = (d1 & (d1 >> 31)) << 1;
163
164 return d1 - d2; // == (b - d) - (a + d);
165}
166
167// Both a and b must not have the most significant bit set
168static inline uint32_t
169upos_min (uint32_t a, uint32_t b)
170{
171 int32_t d = b - a;
172 d &= d >> 31;
173 return a + d;
174}
175
176// Both a and b must not have the most significant bit set
177static inline uint32_t
178upos_max (uint32_t a, uint32_t b)
179{
180 int32_t d = b - a;
181 d &= d >> 31;
182 return b - d;
183}
47 184
48// this is much faster than crossfires original algorithm 185// this is much faster than crossfires original algorithm
49// on modern cpus 186// on modern cpus
50inline int 187inline int
51isqrt (int n) 188isqrt (int n)
83absdir (int d) 220absdir (int d)
84{ 221{
85 return ((d - 1) & 7) + 1; 222 return ((d - 1) & 7) + 1;
86} 223}
87 224
225extern ssize_t slice_alloc; // statistics
226
227void *salloc_ (int n) throw (std::bad_alloc);
228void *salloc_ (int n, void *src) throw (std::bad_alloc);
229
230// strictly the same as g_slice_alloc, but never returns 0
231template<typename T>
232inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
233
234// also copies src into the new area, like "memdup"
235// if src is 0, clears the memory
236template<typename T>
237inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
238
239// clears the memory
240template<typename T>
241inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
242
243// for symmetry
244template<typename T>
245inline void sfree (T *ptr, int n = 1) throw ()
246{
247 if (expect_true (ptr))
248 {
249 slice_alloc -= n * sizeof (T);
250 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
251 g_slice_free1 (n * sizeof (T), (void *)ptr);
252 assert (slice_alloc >= 0);//D
253 }
254}
255
256// nulls the pointer
257template<typename T>
258inline void sfree0 (T *&ptr, int n = 1) throw ()
259{
260 sfree<T> (ptr, n);
261 ptr = 0;
262}
263
88// makes dynamically allocated objects zero-initialised 264// makes dynamically allocated objects zero-initialised
89struct zero_initialised 265struct zero_initialised
90{ 266{
91 void *operator new (size_t s, void *p) 267 void *operator new (size_t s, void *p)
92 { 268 {
94 return p; 270 return p;
95 } 271 }
96 272
97 void *operator new (size_t s) 273 void *operator new (size_t s)
98 { 274 {
99 return g_slice_alloc0 (s); 275 return salloc0<char> (s);
100 } 276 }
101 277
102 void *operator new[] (size_t s) 278 void *operator new[] (size_t s)
103 { 279 {
104 return g_slice_alloc0 (s); 280 return salloc0<char> (s);
105 } 281 }
106 282
107 void operator delete (void *p, size_t s) 283 void operator delete (void *p, size_t s)
108 { 284 {
109 g_slice_free1 (s, p); 285 sfree ((char *)p, s);
110 } 286 }
111 287
112 void operator delete[] (void *p, size_t s) 288 void operator delete[] (void *p, size_t s)
113 { 289 {
114 g_slice_free1 (s, p); 290 sfree ((char *)p, s);
115 } 291 }
116}; 292};
117 293
118void *salloc_ (int n) throw (std::bad_alloc); 294// makes dynamically allocated objects zero-initialised
119void *salloc_ (int n, void *src) throw (std::bad_alloc); 295struct slice_allocated
120
121// strictly the same as g_slice_alloc, but never returns 0
122template<typename T>
123inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
124
125// also copies src into the new area, like "memdup"
126// if src is 0, clears the memory
127template<typename T>
128inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
129
130// clears the memory
131template<typename T>
132inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
133
134// for symmetry
135template<typename T>
136inline void sfree (T *ptr, int n = 1) throw ()
137{ 296{
138 g_slice_free1 (n * sizeof (T), (void *)ptr); 297 void *operator new (size_t s, void *p)
139} 298 {
299 return p;
300 }
301
302 void *operator new (size_t s)
303 {
304 return salloc<char> (s);
305 }
306
307 void *operator new[] (size_t s)
308 {
309 return salloc<char> (s);
310 }
311
312 void operator delete (void *p, size_t s)
313 {
314 sfree ((char *)p, s);
315 }
316
317 void operator delete[] (void *p, size_t s)
318 {
319 sfree ((char *)p, s);
320 }
321};
140 322
141// a STL-compatible allocator that uses g_slice 323// a STL-compatible allocator that uses g_slice
142// boy, this is verbose 324// boy, this is verbose
143template<typename Tp> 325template<typename Tp>
144struct slice_allocator 326struct slice_allocator
156 { 338 {
157 typedef slice_allocator<U> other; 339 typedef slice_allocator<U> other;
158 }; 340 };
159 341
160 slice_allocator () throw () { } 342 slice_allocator () throw () { }
161 slice_allocator (const slice_allocator &o) throw () { } 343 slice_allocator (const slice_allocator &) throw () { }
162 template<typename Tp2> 344 template<typename Tp2>
163 slice_allocator (const slice_allocator<Tp2> &) throw () { } 345 slice_allocator (const slice_allocator<Tp2> &) throw () { }
164 346
165 ~slice_allocator () { } 347 ~slice_allocator () { }
166 348
175 void deallocate (pointer p, size_type n) 357 void deallocate (pointer p, size_type n)
176 { 358 {
177 sfree<Tp> (p, n); 359 sfree<Tp> (p, n);
178 } 360 }
179 361
180 size_type max_size ()const throw () 362 size_type max_size () const throw ()
181 { 363 {
182 return size_t (-1) / sizeof (Tp); 364 return size_t (-1) / sizeof (Tp);
183 } 365 }
184 366
185 void construct (pointer p, const Tp &val) 367 void construct (pointer p, const Tp &val)
210 } 392 }
211 393
212 void seed (uint32_t seed); 394 void seed (uint32_t seed);
213 uint32_t next (); 395 uint32_t next ();
214 396
215 // uniform distribution 397 // uniform distribution, 0 .. max (0, num - 1)
216 uint32_t operator ()(uint32_t r_max) 398 uint32_t operator ()(uint32_t num)
217 { 399 {
218 return is_constant (r_max) 400 return is_constant (num)
219 ? this->next () % r_max 401 ? (next () * (uint64_t)num) >> 32U
220 : get_range (r_max); 402 : get_range (num);
221 } 403 }
222 404
223 // return a number within (min .. max) 405 // return a number within (min .. max)
224 int operator () (int r_min, int r_max) 406 int operator () (int r_min, int r_max)
225 { 407 {
226 return is_constant (r_min) && is_constant (r_max) 408 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
227 ? r_min + (*this) (max (r_max - r_min + 1, 1)) 409 ? r_min + operator ()(r_max - r_min + 1)
228 : get_range (r_min, r_max); 410 : get_range (r_min, r_max);
229 } 411 }
230 412
231 double operator ()() 413 double operator ()()
232 { 414 {
238 int get_range (int r_min, int r_max); 420 int get_range (int r_min, int r_max);
239}; 421};
240 422
241typedef tausworthe_random_generator rand_gen; 423typedef tausworthe_random_generator rand_gen;
242 424
243extern rand_gen rndm; 425extern rand_gen rndm, rmg_rndm;
426
427INTERFACE_CLASS (attachable)
428struct refcnt_base
429{
430 typedef int refcnt_t;
431 mutable refcnt_t ACC (RW, refcnt);
432
433 MTH void refcnt_inc () const { ++refcnt; }
434 MTH void refcnt_dec () const { --refcnt; }
435
436 refcnt_base () : refcnt (0) { }
437};
438
439// to avoid branches with more advanced compilers
440extern refcnt_base::refcnt_t refcnt_dummy;
244 441
245template<class T> 442template<class T>
246struct refptr 443struct refptr
247{ 444{
445 // p if not null
446 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
447
448 void refcnt_dec ()
449 {
450 if (!is_constant (p))
451 --*refcnt_ref ();
452 else if (p)
453 --p->refcnt;
454 }
455
456 void refcnt_inc ()
457 {
458 if (!is_constant (p))
459 ++*refcnt_ref ();
460 else if (p)
461 ++p->refcnt;
462 }
463
248 T *p; 464 T *p;
249 465
250 refptr () : p(0) { } 466 refptr () : p(0) { }
251 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 467 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
252 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 468 refptr (T *p) : p(p) { refcnt_inc (); }
253 ~refptr () { if (p) p->refcnt_dec (); } 469 ~refptr () { refcnt_dec (); }
254 470
255 const refptr<T> &operator =(T *o) 471 const refptr<T> &operator =(T *o)
256 { 472 {
473 // if decrementing ever destroys we need to reverse the order here
257 if (p) p->refcnt_dec (); 474 refcnt_dec ();
258 p = o; 475 p = o;
259 if (p) p->refcnt_inc (); 476 refcnt_inc ();
260
261 return *this; 477 return *this;
262 } 478 }
263 479
264 const refptr<T> &operator =(const refptr<T> o) 480 const refptr<T> &operator =(const refptr<T> &o)
265 { 481 {
266 *this = o.p; 482 *this = o.p;
267 return *this; 483 return *this;
268 } 484 }
269 485
270 T &operator * () const { return *p; } 486 T &operator * () const { return *p; }
271 T *operator ->() const { return p; } 487 T *operator ->() const { return p; }
272 488
273 operator T *() const { return p; } 489 operator T *() const { return p; }
274}; 490};
275 491
276typedef refptr<maptile> maptile_ptr; 492typedef refptr<maptile> maptile_ptr;
311 { 527 {
312 return !strcmp (a, b); 528 return !strcmp (a, b);
313 } 529 }
314}; 530};
315 531
532// Mostly the same as std::vector, but insert/erase can reorder
533// the elements, making append(=insert)/remove O(1) instead of O(n).
534//
535// NOTE: only some forms of erase are available
316template<class T> 536template<class T>
317struct unordered_vector : std::vector<T, slice_allocator<T> > 537struct unordered_vector : std::vector<T, slice_allocator<T> >
318{ 538{
319 typedef typename unordered_vector::iterator iterator; 539 typedef typename unordered_vector::iterator iterator;
320 540
330 { 550 {
331 erase ((unsigned int )(i - this->begin ())); 551 erase ((unsigned int )(i - this->begin ()));
332 } 552 }
333}; 553};
334 554
335template<class T, int T::* index> 555// This container blends advantages of linked lists
556// (efficiency) with vectors (random access) by
557// by using an unordered vector and storing the vector
558// index inside the object.
559//
560// + memory-efficient on most 64 bit archs
561// + O(1) insert/remove
562// + free unique (but varying) id for inserted objects
563// + cache-friendly iteration
564// - only works for pointers to structs
565//
566// NOTE: only some forms of erase/insert are available
567typedef int object_vector_index;
568
569template<class T, object_vector_index T::*indexmember>
336struct object_vector : std::vector<T *, slice_allocator<T *> > 570struct object_vector : std::vector<T *, slice_allocator<T *> >
337{ 571{
572 typedef typename object_vector::iterator iterator;
573
574 bool contains (const T *obj) const
575 {
576 return obj->*indexmember;
577 }
578
579 iterator find (const T *obj)
580 {
581 return obj->*indexmember
582 ? this->begin () + obj->*indexmember - 1
583 : this->end ();
584 }
585
586 void push_back (T *obj)
587 {
588 std::vector<T *, slice_allocator<T *> >::push_back (obj);
589 obj->*indexmember = this->size ();
590 }
591
338 void insert (T *obj) 592 void insert (T *obj)
339 { 593 {
340 assert (!(obj->*index));
341 push_back (obj); 594 push_back (obj);
342 obj->*index = this->size ();
343 } 595 }
344 596
345 void insert (T &obj) 597 void insert (T &obj)
346 { 598 {
347 insert (&obj); 599 insert (&obj);
348 } 600 }
349 601
350 void erase (T *obj) 602 void erase (T *obj)
351 { 603 {
352 assert (obj->*index);
353 int pos = obj->*index; 604 unsigned int pos = obj->*indexmember;
354 obj->*index = 0; 605 obj->*indexmember = 0;
355 606
356 if (pos < this->size ()) 607 if (pos < this->size ())
357 { 608 {
358 (*this)[pos - 1] = (*this)[this->size () - 1]; 609 (*this)[pos - 1] = (*this)[this->size () - 1];
359 (*this)[pos - 1]->*index = pos; 610 (*this)[pos - 1]->*indexmember = pos;
360 } 611 }
361 612
362 this->pop_back (); 613 this->pop_back ();
363 } 614 }
364 615
365 void erase (T &obj) 616 void erase (T &obj)
366 { 617 {
367 errase (&obj); 618 erase (&obj);
368 } 619 }
369}; 620};
370 621
371// basically does what strncpy should do, but appends "..." to strings exceeding length 622// basically does what strncpy should do, but appends "..." to strings exceeding length
372void assign (char *dst, const char *src, int maxlen); 623void assign (char *dst, const char *src, int maxlen);
378 assign ((char *)&dst, src, N); 629 assign ((char *)&dst, src, N);
379} 630}
380 631
381typedef double tstamp; 632typedef double tstamp;
382 633
383// return current time as timestampe 634// return current time as timestamp
384tstamp now (); 635tstamp now ();
385 636
386int similar_direction (int a, int b); 637int similar_direction (int a, int b);
387 638
639// like sprintf, but returns a "static" buffer
640const char *format (const char *format, ...);
641
642/////////////////////////////////////////////////////////////////////////////
643// threads, very very thin wrappers around pthreads
644
645struct thread
646{
647 pthread_t id;
648
649 void start (void *(*start_routine)(void *), void *arg = 0);
650
651 void cancel ()
652 {
653 pthread_cancel (id);
654 }
655
656 void *join ()
657 {
658 void *ret;
659
660 if (pthread_join (id, &ret))
661 cleanup ("pthread_join failed", 1);
662
663 return ret;
664 }
665};
666
667// note that mutexes are not classes
668typedef pthread_mutex_t smutex;
669
670#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
671 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
672#else
673 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
388#endif 674#endif
389 675
676#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
677#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
678#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
679
680typedef pthread_cond_t scond;
681
682#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
683#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
684#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
685#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
686
687#endif
688

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines