ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.8 by root, Mon Sep 11 23:33:30 2006 UTC vs.
Revision 1.46 by root, Mon May 28 21:15:56 2007 UTC

1/*
2 * This file is part of Crossfire TRT, the Multiplayer Online Role Playing Game.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team
5 *
6 * Crossfire TRT is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with Crossfire TRT; if not, write to the Free Software Foundation, Inc. 51
18 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * The authors can be reached via e-mail to <crossfire@schmorp.de>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
26//#define PREFER_MALLOC
27
4#if __GNUC__ >= 3 28#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 29# define is_constant(c) __builtin_constant_p (c)
30# define expect(expr,value) __builtin_expect ((expr),(value))
31# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
6#else 32#else
7# define is_constant(c) 0 33# define is_constant(c) 0
34# define expect(expr,value) (expr)
35# define prefetch(addr,rw,locality)
8#endif 36#endif
37
38// put into ifs if you are very sure that the expression
39// is mostly true or mosty false. note that these return
40// booleans, not the expression.
41#define expect_false(expr) expect ((expr) != 0, 0)
42#define expect_true(expr) expect ((expr) != 0, 1)
43
44#include <cstddef>
45#include <cmath>
46#include <new>
47#include <vector>
48
49#include <glib.h>
50
51#include <shstr.h>
52#include <traits.h>
53
54// use a gcc extension for auto declarations until ISO C++ sanctifies them
55#define auto(var,expr) typeof(expr) var = (expr)
56
57// very ugly macro that basicaly declares and initialises a variable
58// that is in scope for the next statement only
59// works only for stuff that can be assigned 0 and converts to false
60// (note: works great for pointers)
61// most ugly macro I ever wrote
62#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
63
64// in range including end
65#define IN_RANGE_INC(val,beg,end) \
66 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
67
68// in range excluding end
69#define IN_RANGE_EXC(val,beg,end) \
70 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
71
72void fork_abort (const char *msg);
73
74// rationale for using (U) not (T) is to reduce signed/unsigned issues,
75// as a is often a constant while b is the variable. it is still a bug, though.
76template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
77template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
78template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
79
80template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
81
82template<typename T>
83static inline T
84lerp (T val, T min_in, T max_in, T min_out, T max_out)
85{
86 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
87}
88
89// lots of stuff taken from FXT
90
91/* Rotate right. This is used in various places for checksumming */
92//TODO: that sucks, use a better checksum algo
93static inline uint32_t
94rotate_right (uint32_t c, uint32_t count = 1)
95{
96 return (c << (32 - count)) | (c >> count);
97}
98
99static inline uint32_t
100rotate_left (uint32_t c, uint32_t count = 1)
101{
102 return (c >> (32 - count)) | (c << count);
103}
104
105// Return abs(a-b)
106// Both a and b must not have the most significant bit set
107static inline uint32_t
108upos_abs_diff (uint32_t a, uint32_t b)
109{
110 long d1 = b - a;
111 long d2 = (d1 & (d1 >> 31)) << 1;
112
113 return d1 - d2; // == (b - d) - (a + d);
114}
115
116// Both a and b must not have the most significant bit set
117static inline uint32_t
118upos_min (uint32_t a, uint32_t b)
119{
120 int32_t d = b - a;
121 d &= d >> 31;
122 return a + d;
123}
124
125// Both a and b must not have the most significant bit set
126static inline uint32_t
127upos_max (uint32_t a, uint32_t b)
128{
129 int32_t d = b - a;
130 d &= d >> 31;
131 return b - d;
132}
133
134// this is much faster than crossfires original algorithm
135// on modern cpus
136inline int
137isqrt (int n)
138{
139 return (int)sqrtf ((float)n);
140}
141
142// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
143#if 0
144// and has a max. error of 6 in the range -100..+100.
145#else
146// and has a max. error of 9 in the range -100..+100.
147#endif
148inline int
149idistance (int dx, int dy)
150{
151 unsigned int dx_ = abs (dx);
152 unsigned int dy_ = abs (dy);
153
154#if 0
155 return dx_ > dy_
156 ? (dx_ * 61685 + dy_ * 26870) >> 16
157 : (dy_ * 61685 + dx_ * 26870) >> 16;
158#else
159 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
160#endif
161}
162
163/*
164 * absdir(int): Returns a number between 1 and 8, which represent
165 * the "absolute" direction of a number (it actually takes care of
166 * "overflow" in previous calculations of a direction).
167 */
168inline int
169absdir (int d)
170{
171 return ((d - 1) & 7) + 1;
172}
9 173
10// makes dynamically allocated objects zero-initialised 174// makes dynamically allocated objects zero-initialised
11struct zero_initialised 175struct zero_initialised
12{ 176{
13 void *operator new (size_t s, void *); 177 void *operator new (size_t s, void *p)
178 {
179 memset (p, 0, s);
180 return p;
181 }
182
14 void *operator new (size_t s); 183 void *operator new (size_t s)
184 {
185 return g_slice_alloc0 (s);
186 }
187
15 void *operator new [] (size_t s); 188 void *operator new[] (size_t s)
189 {
190 return g_slice_alloc0 (s);
191 }
192
16 void operator delete (void *p, size_t s); 193 void operator delete (void *p, size_t s)
194 {
195 g_slice_free1 (s, p);
196 }
197
17 void operator delete [] (void *p, size_t s); 198 void operator delete[] (void *p, size_t s)
199 {
200 g_slice_free1 (s, p);
201 }
18}; 202};
19 203
20struct refcounted 204void *salloc_ (int n) throw (std::bad_alloc);
205void *salloc_ (int n, void *src) throw (std::bad_alloc);
206
207// strictly the same as g_slice_alloc, but never returns 0
208template<typename T>
209inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
210
211// also copies src into the new area, like "memdup"
212// if src is 0, clears the memory
213template<typename T>
214inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
215
216// clears the memory
217template<typename T>
218inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
219
220// for symmetry
221template<typename T>
222inline void sfree (T *ptr, int n = 1) throw ()
21{ 223{
22 mutable int refcnt; 224#ifdef PREFER_MALLOC
23 refcounted () : refcnt (0) { } 225 free (ptr);
24 void refcnt_inc () { ++refcnt; } 226#else
25 void refcnt_dec () { --refcnt; 227 g_slice_free1 (n * sizeof (T), (void *)ptr);
26 if (refcnt < 0)abort();}//D 228#endif
229}
230
231// a STL-compatible allocator that uses g_slice
232// boy, this is verbose
233template<typename Tp>
234struct slice_allocator
235{
236 typedef size_t size_type;
237 typedef ptrdiff_t difference_type;
238 typedef Tp *pointer;
239 typedef const Tp *const_pointer;
240 typedef Tp &reference;
241 typedef const Tp &const_reference;
242 typedef Tp value_type;
243
244 template <class U>
245 struct rebind
246 {
247 typedef slice_allocator<U> other;
248 };
249
250 slice_allocator () throw () { }
251 slice_allocator (const slice_allocator &o) throw () { }
252 template<typename Tp2>
253 slice_allocator (const slice_allocator<Tp2> &) throw () { }
254
255 ~slice_allocator () { }
256
257 pointer address (reference x) const { return &x; }
258 const_pointer address (const_reference x) const { return &x; }
259
260 pointer allocate (size_type n, const_pointer = 0)
261 {
262 return salloc<Tp> (n);
263 }
264
265 void deallocate (pointer p, size_type n)
266 {
267 sfree<Tp> (p, n);
268 }
269
270 size_type max_size ()const throw ()
271 {
272 return size_t (-1) / sizeof (Tp);
273 }
274
275 void construct (pointer p, const Tp &val)
276 {
277 ::new (p) Tp (val);
278 }
279
280 void destroy (pointer p)
281 {
282 p->~Tp ();
283 }
27}; 284};
285
286// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
287// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
288// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
289struct tausworthe_random_generator
290{
291 // generator
292 uint32_t state [4];
293
294 void operator =(const tausworthe_random_generator &src)
295 {
296 state [0] = src.state [0];
297 state [1] = src.state [1];
298 state [2] = src.state [2];
299 state [3] = src.state [3];
300 }
301
302 void seed (uint32_t seed);
303 uint32_t next ();
304
305 // uniform distribution
306 uint32_t operator ()(uint32_t num)
307 {
308 return is_constant (num)
309 ? (next () * (uint64_t)num) >> 32U
310 : get_range (num);
311 }
312
313 // return a number within (min .. max)
314 int operator () (int r_min, int r_max)
315 {
316 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
317 ? r_min + operator ()(r_max - r_min + 1)
318 : get_range (r_min, r_max);
319 }
320
321 double operator ()()
322 {
323 return this->next () / (double)0xFFFFFFFFU;
324 }
325
326protected:
327 uint32_t get_range (uint32_t r_max);
328 int get_range (int r_min, int r_max);
329};
330
331typedef tausworthe_random_generator rand_gen;
332
333extern rand_gen rndm;
28 334
29template<class T> 335template<class T>
30struct refptr 336struct refptr
31{ 337{
32 T *p; 338 T *p;
54 T &operator * () const { return *p; } 360 T &operator * () const { return *p; }
55 T *operator ->() const { return p; } 361 T *operator ->() const { return p; }
56 362
57 operator T *() const { return p; } 363 operator T *() const { return p; }
58}; 364};
365
366typedef refptr<maptile> maptile_ptr;
367typedef refptr<object> object_ptr;
368typedef refptr<archetype> arch_ptr;
369typedef refptr<client> client_ptr;
370typedef refptr<player> player_ptr;
59 371
60struct str_hash 372struct str_hash
61{ 373{
62 std::size_t operator ()(const char *s) const 374 std::size_t operator ()(const char *s) const
63 { 375 {
89 { 401 {
90 return !strcmp (a, b); 402 return !strcmp (a, b);
91 } 403 }
92}; 404};
93 405
94#include <vector>
95
96template<class obj> 406template<class T>
97struct unordered_vector : std::vector<obj> 407struct unordered_vector : std::vector<T, slice_allocator<T> >
98{ 408{
99 typedef typename std::vector<obj>::iterator iterator; 409 typedef typename unordered_vector::iterator iterator;
100 410
101 void erase (unsigned int pos) 411 void erase (unsigned int pos)
102 { 412 {
103 if (pos < this->size () - 1) 413 if (pos < this->size () - 1)
104 (*this)[pos] = (*this)[this->size () - 1]; 414 (*this)[pos] = (*this)[this->size () - 1];
110 { 420 {
111 erase ((unsigned int )(i - this->begin ())); 421 erase ((unsigned int )(i - this->begin ()));
112 } 422 }
113}; 423};
114 424
115template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 425template<class T, int T::* index>
116template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 426struct object_vector : std::vector<T *, slice_allocator<T *> >
117template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 427{
428 void insert (T *obj)
429 {
430 assert (!(obj->*index));
431 push_back (obj);
432 obj->*index = this->size ();
433 }
118 434
119template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 435 void insert (T &obj)
436 {
437 insert (&obj);
438 }
439
440 void erase (T *obj)
441 {
442 assert (obj->*index);
443 unsigned int pos = obj->*index;
444 obj->*index = 0;
445
446 if (pos < this->size ())
447 {
448 (*this)[pos - 1] = (*this)[this->size () - 1];
449 (*this)[pos - 1]->*index = pos;
450 }
451
452 this->pop_back ();
453 }
454
455 void erase (T &obj)
456 {
457 errase (&obj);
458 }
459};
460
461// basically does what strncpy should do, but appends "..." to strings exceeding length
462void assign (char *dst, const char *src, int maxlen);
463
464// type-safe version of assign
465template<int N>
466inline void assign (char (&dst)[N], const char *src)
467{
468 assign ((char *)&dst, src, N);
469}
470
471typedef double tstamp;
472
473// return current time as timestampe
474tstamp now ();
475
476int similar_direction (int a, int b);
477
478// like printf, but returns a std::string
479const std::string format (const char *format, ...);
120 480
121#endif 481#endif
122 482

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines