ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.80 by root, Tue Dec 23 01:51:28 2008 UTC vs.
Revision 1.128 by root, Tue Nov 27 18:47:35 2018 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Deliantra is free software: you can redistribute it and/or modify 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * it under the terms of the GNU General Public License as published by 8 * the terms of the Affero GNU General Public License as published by the
8 * the Free Software Foundation, either version 3 of the License, or 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * (at your option) any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
18 * 20 *
19 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 22 */
21 23
22#ifndef UTIL_H__ 24#ifndef UTIL_H__
23#define UTIL_H__ 25#define UTIL_H__
26
27#include <compiler.h>
24 28
25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0 29#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs 30#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator 31#define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
29#if __GNUC__ >= 3
30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33#else
34# define is_constant(c) 0
35# define expect(expr,value) (expr)
36# define prefetch(addr,rw,locality)
37#endif
38
39#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40# define decltype(x) typeof(x)
41#endif
42
43// put into ifs if you are very sure that the expression
44// is mostly true or mosty false. note that these return
45// booleans, not the expression.
46#define expect_false(expr) expect ((expr) != 0, 0)
47#define expect_true(expr) expect ((expr) != 0, 1)
48 32
49#include <pthread.h> 33#include <pthread.h>
50 34
51#include <cstddef> 35#include <cstddef>
52#include <cmath> 36#include <cmath>
53#include <new> 37#include <new>
54#include <vector> 38#include <vector>
55 39
56#include <glib.h> 40#include <glib.h>
41
42#include <flat_hash_map.hpp>
57 43
58#include <shstr.h> 44#include <shstr.h>
59#include <traits.h> 45#include <traits.h>
60 46
61#if DEBUG_SALLOC 47#if DEBUG_SALLOC
72#endif 58#endif
73 59
74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 60// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75#define auto(var,expr) decltype(expr) var = (expr) 61#define auto(var,expr) decltype(expr) var = (expr)
76 62
63#if cplusplus_does_not_suck /* still sucks in codesize with gcc 6, although local types work now */
64// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
65template<typename T, int N>
66static inline int array_length (const T (&arr)[N])
67{
68 return N;
69}
70#else
71#define array_length(name) (sizeof (name) / sizeof (name [0]))
72#endif
73
77// very ugly macro that basicaly declares and initialises a variable 74// very ugly macro that basically declares and initialises a variable
78// that is in scope for the next statement only 75// that is in scope for the next statement only
79// works only for stuff that can be assigned 0 and converts to false 76// works only for stuff that can be assigned 0 and converts to false
80// (note: works great for pointers) 77// (note: works great for pointers)
81// most ugly macro I ever wrote 78// most ugly macro I ever wrote
82#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 79#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
87 84
88// in range excluding end 85// in range excluding end
89#define IN_RANGE_EXC(val,beg,end) \ 86#define IN_RANGE_EXC(val,beg,end) \
90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 87 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91 88
92void cleanup (const char *cause, bool make_core = false); 89ecb_cold void cleanup (const char *cause, bool make_core = false);
93void fork_abort (const char *msg); 90ecb_cold void fork_abort (const char *msg);
94 91
95// rationale for using (U) not (T) is to reduce signed/unsigned issues, 92// rationale for using (U) not (T) is to reduce signed/unsigned issues,
96// as a is often a constant while b is the variable. it is still a bug, though. 93// as a is often a constant while b is the variable. it is still a bug, though.
97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 94template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 95template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 96template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100 97
101template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); } 98template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
102template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); } 99template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
103template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); } 100template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
110// sign returns -1 or +1 107// sign returns -1 or +1
111template<typename T> 108template<typename T>
112static inline T sign (T v) { return v < 0 ? -1 : +1; } 109static inline T sign (T v) { return v < 0 ? -1 : +1; }
113// relies on 2c representation 110// relies on 2c representation
114template<> 111template<>
115inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); } 112inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
113template<>
114inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
115template<>
116inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
116 117
117// sign0 returns -1, 0 or +1 118// sign0 returns -1, 0 or +1
118template<typename T> 119template<typename T>
119static inline T sign0 (T v) { return v ? sign (v) : 0; } 120static inline T sign0 (T v) { return v ? sign (v) : 0; }
120 121
122//clashes with C++0x
123template<typename T, typename U>
124static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
125
126// div* only work correctly for div > 0
121// div, with correct rounding (< 0.5 downwards, >=0.5 upwards) 127// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; } 128template<typename T> static inline T div (T val, T div)
129{
130 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
131}
132
133template<> inline float div (float val, float div) { return val / div; }
134template<> inline double div (double val, double div) { return val / div; }
135
123// div, round-up 136// div, round-up
124template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; } 137template<typename T> static inline T div_ru (T val, T div)
138{
139 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
140}
125// div, round-down 141// div, round-down
126template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; } 142template<typename T> static inline T div_rd (T val, T div)
143{
144 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
145}
127 146
147// lerp* only work correctly for min_in < max_in
148// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
128template<typename T> 149template<typename T>
129static inline T 150static inline T
130lerp (T val, T min_in, T max_in, T min_out, T max_out) 151lerp (T val, T min_in, T max_in, T min_out, T max_out)
131{ 152{
132 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in); 153 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
191 int32_t d = b - a; 212 int32_t d = b - a;
192 d &= d >> 31; 213 d &= d >> 31;
193 return b - d; 214 return b - d;
194} 215}
195 216
196// this is much faster than crossfires original algorithm 217// this is much faster than crossfire's original algorithm
197// on modern cpus 218// on modern cpus
198inline int 219inline int
199isqrt (int n) 220isqrt (int n)
200{ 221{
201 return (int)sqrtf ((float)n); 222 return (int)sqrtf ((float)n);
223}
224
225// this is kind of like the ^^ operator, if it would exist, without sequence point.
226// more handy than it looks like, due to the implicit !! done on its arguments
227inline bool
228logical_xor (bool a, bool b)
229{
230 return a != b;
231}
232
233inline bool
234logical_implies (bool a, bool b)
235{
236 return a <= b;
202} 237}
203 238
204// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 239// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
205#if 0 240#if 0
206// and has a max. error of 6 in the range -100..+100. 241// and has a max. error of 6 in the range -100..+100.
207#else 242#else
208// and has a max. error of 9 in the range -100..+100. 243// and has a max. error of 9 in the range -100..+100.
209#endif 244#endif
210inline int 245inline int
211idistance (int dx, int dy) 246idistance (int dx, int dy)
212{ 247{
213 unsigned int dx_ = abs (dx); 248 unsigned int dx_ = abs (dx);
214 unsigned int dy_ = abs (dy); 249 unsigned int dy_ = abs (dy);
215 250
216#if 0 251#if 0
217 return dx_ > dy_ 252 return dx_ > dy_
220#else 255#else
221 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 256 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
222#endif 257#endif
223} 258}
224 259
260// can be substantially faster than floor, if your value range allows for it
261template<typename T>
262inline T
263fastfloor (T x)
264{
265 return std::floor (x);
266}
267
268inline float
269fastfloor (float x)
270{
271 return sint32(x) - (x < 0);
272}
273
274inline double
275fastfloor (double x)
276{
277 return sint64(x) - (x < 0);
278}
279
225/* 280/*
226 * absdir(int): Returns a number between 1 and 8, which represent 281 * absdir(int): Returns a number between 1 and 8, which represent
227 * the "absolute" direction of a number (it actually takes care of 282 * the "absolute" direction of a number (it actually takes care of
228 * "overflow" in previous calculations of a direction). 283 * "overflow" in previous calculations of a direction).
229 */ 284 */
231absdir (int d) 286absdir (int d)
232{ 287{
233 return ((d - 1) & 7) + 1; 288 return ((d - 1) & 7) + 1;
234} 289}
235 290
291#define for_all_bits_sparse_32(mask, idxvar) \
292 for (uint32_t idxvar, mask_ = mask; \
293 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
294
236extern ssize_t slice_alloc; // statistics 295extern ssize_t slice_alloc; // statistics
237 296
238void *salloc_ (int n) throw (std::bad_alloc); 297void *salloc_ (int n);
239void *salloc_ (int n, void *src) throw (std::bad_alloc); 298void *salloc_ (int n, void *src);
240 299
241// strictly the same as g_slice_alloc, but never returns 0 300// strictly the same as g_slice_alloc, but never returns 0
242template<typename T> 301template<typename T>
243inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); } 302inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
244 303
245// also copies src into the new area, like "memdup" 304// also copies src into the new area, like "memdup"
246// if src is 0, clears the memory 305// if src is 0, clears the memory
247template<typename T> 306template<typename T>
248inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); } 307inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
249 308
250// clears the memory 309// clears the memory
251template<typename T> 310template<typename T>
252inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); } 311inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
253 312
254// for symmetry 313// for symmetry
255template<typename T> 314template<typename T>
256inline void sfree (T *ptr, int n = 1) throw () 315inline void sfree (T *ptr, int n = 1) noexcept
257{ 316{
258 if (expect_true (ptr)) 317 if (expect_true (ptr))
259 { 318 {
260 slice_alloc -= n * sizeof (T); 319 slice_alloc -= n * sizeof (T);
261 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T)); 320 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
262 g_slice_free1 (n * sizeof (T), (void *)ptr); 321 g_slice_free1 (n * sizeof (T), (void *)ptr);
263 assert (slice_alloc >= 0);//D
264 } 322 }
265} 323}
266 324
267// nulls the pointer 325// nulls the pointer
268template<typename T> 326template<typename T>
269inline void sfree0 (T *&ptr, int n = 1) throw () 327inline void sfree0 (T *&ptr, int n = 1) noexcept
270{ 328{
271 sfree<T> (ptr, n); 329 sfree<T> (ptr, n);
272 ptr = 0; 330 ptr = 0;
273} 331}
274 332
342 typedef const Tp *const_pointer; 400 typedef const Tp *const_pointer;
343 typedef Tp &reference; 401 typedef Tp &reference;
344 typedef const Tp &const_reference; 402 typedef const Tp &const_reference;
345 typedef Tp value_type; 403 typedef Tp value_type;
346 404
347 template <class U> 405 template <class U>
348 struct rebind 406 struct rebind
349 { 407 {
350 typedef slice_allocator<U> other; 408 typedef slice_allocator<U> other;
351 }; 409 };
352 410
353 slice_allocator () throw () { } 411 slice_allocator () noexcept { }
354 slice_allocator (const slice_allocator &) throw () { } 412 slice_allocator (const slice_allocator &) noexcept { }
355 template<typename Tp2> 413 template<typename Tp2>
356 slice_allocator (const slice_allocator<Tp2> &) throw () { } 414 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
357 415
358 ~slice_allocator () { } 416 ~slice_allocator () { }
359 417
360 pointer address (reference x) const { return &x; } 418 pointer address (reference x) const { return &x; }
361 const_pointer address (const_reference x) const { return &x; } 419 const_pointer address (const_reference x) const { return &x; }
368 void deallocate (pointer p, size_type n) 426 void deallocate (pointer p, size_type n)
369 { 427 {
370 sfree<Tp> (p, n); 428 sfree<Tp> (p, n);
371 } 429 }
372 430
373 size_type max_size () const throw () 431 size_type max_size () const noexcept
374 { 432 {
375 return size_t (-1) / sizeof (Tp); 433 return size_t (-1) / sizeof (Tp);
376 } 434 }
377 435
378 void construct (pointer p, const Tp &val) 436 void construct (pointer p, const Tp &val)
384 { 442 {
385 p->~Tp (); 443 p->~Tp ();
386 } 444 }
387}; 445};
388 446
389// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 447// basically a memory area, but refcounted
390// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 448struct refcnt_buf
391// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
392struct tausworthe_random_generator
393{ 449{
394 // generator 450 char *data;
395 uint32_t state [4];
396 451
397 void operator =(const tausworthe_random_generator &src) 452 refcnt_buf (size_t size = 0);
398 { 453 refcnt_buf (void *data, size_t size);
399 state [0] = src.state [0];
400 state [1] = src.state [1];
401 state [2] = src.state [2];
402 state [3] = src.state [3];
403 }
404 454
405 void seed (uint32_t seed); 455 refcnt_buf (const refcnt_buf &src)
406 uint32_t next ();
407
408 // uniform distribution, 0 .. max (0, num - 1)
409 uint32_t operator ()(uint32_t num)
410 { 456 {
411 return is_constant (num) 457 data = src.data;
412 ? (next () * (uint64_t)num) >> 32U 458 inc ();
413 : get_range (num);
414 } 459 }
415 460
416 // return a number within (min .. max) 461 ~refcnt_buf ();
417 int operator () (int r_min, int r_max)
418 {
419 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
420 ? r_min + operator ()(r_max - r_min + 1)
421 : get_range (r_min, r_max);
422 }
423 462
424 double operator ()() 463 refcnt_buf &operator =(const refcnt_buf &src);
464
465 operator char *()
425 { 466 {
426 return this->next () / (double)0xFFFFFFFFU; 467 return data;
468 }
469
470 size_t size () const
471 {
472 return _size ();
427 } 473 }
428 474
429protected: 475protected:
430 uint32_t get_range (uint32_t r_max); 476 enum {
431 int get_range (int r_min, int r_max); 477 overhead = sizeof (uint32_t) * 2
432}; 478 };
433 479
434typedef tausworthe_random_generator rand_gen; 480 uint32_t &_size () const
481 {
482 return ((unsigned int *)data)[-2];
483 }
435 484
436extern rand_gen rndm, rmg_rndm; 485 uint32_t &_refcnt () const
486 {
487 return ((unsigned int *)data)[-1];
488 }
489
490 void _alloc (uint32_t size)
491 {
492 data = ((char *)salloc<char> (size + overhead)) + overhead;
493 _size () = size;
494 _refcnt () = 1;
495 }
496
497 void _dealloc ();
498
499 void inc ()
500 {
501 ++_refcnt ();
502 }
503
504 void dec ()
505 {
506 if (!--_refcnt ())
507 _dealloc ();
508 }
509};
437 510
438INTERFACE_CLASS (attachable) 511INTERFACE_CLASS (attachable)
439struct refcnt_base 512struct refcnt_base
440{ 513{
441 typedef int refcnt_t; 514 typedef int refcnt_t;
456 // p if not null 529 // p if not null
457 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; } 530 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
458 531
459 void refcnt_dec () 532 void refcnt_dec ()
460 { 533 {
461 if (!is_constant (p)) 534 if (!ecb_is_constant (p))
462 --*refcnt_ref (); 535 --*refcnt_ref ();
463 else if (p) 536 else if (p)
464 --p->refcnt; 537 --p->refcnt;
465 } 538 }
466 539
467 void refcnt_inc () 540 void refcnt_inc ()
468 { 541 {
469 if (!is_constant (p)) 542 if (!ecb_is_constant (p))
470 ++*refcnt_ref (); 543 ++*refcnt_ref ();
471 else if (p) 544 else if (p)
472 ++p->refcnt; 545 ++p->refcnt;
473 } 546 }
474 547
503typedef refptr<maptile> maptile_ptr; 576typedef refptr<maptile> maptile_ptr;
504typedef refptr<object> object_ptr; 577typedef refptr<object> object_ptr;
505typedef refptr<archetype> arch_ptr; 578typedef refptr<archetype> arch_ptr;
506typedef refptr<client> client_ptr; 579typedef refptr<client> client_ptr;
507typedef refptr<player> player_ptr; 580typedef refptr<player> player_ptr;
581typedef refptr<region> region_ptr;
582
583#define STRHSH_NULL 2166136261
584
585static inline uint32_t
586strhsh (const char *s)
587{
588 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
589 // it is about twice as fast as the one-at-a-time one,
590 // with good distribution.
591 // FNV-1a is faster on many cpus because the multiplication
592 // runs concurrently with the looping logic.
593 // we modify the hash a bit to improve its distribution
594 uint32_t hash = STRHSH_NULL;
595
596 while (*s)
597 hash = (hash ^ *s++) * 16777619U;
598
599 return hash ^ (hash >> 16);
600}
601
602static inline uint32_t
603memhsh (const char *s, size_t len)
604{
605 uint32_t hash = STRHSH_NULL;
606
607 while (len--)
608 hash = (hash ^ *s++) * 16777619U;
609
610 return hash;
611}
508 612
509struct str_hash 613struct str_hash
510{ 614{
511 std::size_t operator ()(const char *s) const 615 std::size_t operator ()(const char *s) const
512 { 616 {
513 unsigned long hash = 0;
514
515 /* use the one-at-a-time hash function, which supposedly is
516 * better than the djb2-like one used by perl5.005, but
517 * certainly is better then the bug used here before.
518 * see http://burtleburtle.net/bob/hash/doobs.html
519 */
520 while (*s)
521 {
522 hash += *s++;
523 hash += hash << 10;
524 hash ^= hash >> 6;
525 }
526
527 hash += hash << 3;
528 hash ^= hash >> 11;
529 hash += hash << 15;
530
531 return hash; 617 return strhsh (s);
532 } 618 }
619
620 std::size_t operator ()(const shstr &s) const
621 {
622 return strhsh (s);
623 }
624
625 typedef ska::power_of_two_hash_policy hash_policy;
533}; 626};
534 627
535struct str_equal 628struct str_equal
536{ 629{
537 bool operator ()(const char *a, const char *b) const 630 bool operator ()(const char *a, const char *b) const
563 } 656 }
564}; 657};
565 658
566// This container blends advantages of linked lists 659// This container blends advantages of linked lists
567// (efficiency) with vectors (random access) by 660// (efficiency) with vectors (random access) by
568// by using an unordered vector and storing the vector 661// using an unordered vector and storing the vector
569// index inside the object. 662// index inside the object.
570// 663//
571// + memory-efficient on most 64 bit archs 664// + memory-efficient on most 64 bit archs
572// + O(1) insert/remove 665// + O(1) insert/remove
573// + free unique (but varying) id for inserted objects 666// + free unique (but varying) id for inserted objects
610 insert (&obj); 703 insert (&obj);
611 } 704 }
612 705
613 void erase (T *obj) 706 void erase (T *obj)
614 { 707 {
615 unsigned int pos = obj->*indexmember; 708 object_vector_index pos = obj->*indexmember;
616 obj->*indexmember = 0; 709 obj->*indexmember = 0;
617 710
618 if (pos < this->size ()) 711 if (pos < this->size ())
619 { 712 {
620 (*this)[pos - 1] = (*this)[this->size () - 1]; 713 (*this)[pos - 1] = (*this)[this->size () - 1];
628 { 721 {
629 erase (&obj); 722 erase (&obj);
630 } 723 }
631}; 724};
632 725
726/////////////////////////////////////////////////////////////////////////////
727
728// something like a vector or stack, but without
729// out of bounds checking
730template<typename T>
731struct fixed_stack
732{
733 T *data;
734 int size;
735 int max;
736
737 fixed_stack ()
738 : size (0), data (0)
739 {
740 }
741
742 fixed_stack (int max)
743 : size (0), max (max)
744 {
745 data = salloc<T> (max);
746 }
747
748 void reset (int new_max)
749 {
750 sfree (data, max);
751 size = 0;
752 max = new_max;
753 data = salloc<T> (max);
754 }
755
756 void free ()
757 {
758 sfree (data, max);
759 data = 0;
760 }
761
762 ~fixed_stack ()
763 {
764 sfree (data, max);
765 }
766
767 T &operator[](int idx)
768 {
769 return data [idx];
770 }
771
772 void push (T v)
773 {
774 data [size++] = v;
775 }
776
777 T &pop ()
778 {
779 return data [--size];
780 }
781
782 T remove (int idx)
783 {
784 T v = data [idx];
785
786 data [idx] = data [--size];
787
788 return v;
789 }
790};
791
792/////////////////////////////////////////////////////////////////////////////
793
633// basically does what strncpy should do, but appends "..." to strings exceeding length 794// basically does what strncpy should do, but appends "..." to strings exceeding length
795// returns the number of bytes actually used (including \0)
634void assign (char *dst, const char *src, int maxlen); 796int assign (char *dst, const char *src, int maxsize);
635 797
636// type-safe version of assign 798// type-safe version of assign
637template<int N> 799template<int N>
638inline void assign (char (&dst)[N], const char *src) 800inline int assign (char (&dst)[N], const char *src)
639{ 801{
640 assign ((char *)&dst, src, N); 802 return assign ((char *)&dst, src, N);
641} 803}
642 804
643typedef double tstamp; 805typedef double tstamp;
644 806
645// return current time as timestamp 807// return current time as timestamp
646tstamp now (); 808tstamp now ();
647 809
648int similar_direction (int a, int b); 810int similar_direction (int a, int b);
649 811
650// like sprintf, but returns a "static" buffer 812// like v?sprintf, but returns a "static" buffer
651const char *format (const char *format, ...); 813char *vformat (const char *format, va_list ap);
814char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
815
816// safety-check player input which will become object->msg
817bool msg_is_safe (const char *msg);
652 818
653///////////////////////////////////////////////////////////////////////////// 819/////////////////////////////////////////////////////////////////////////////
654// threads, very very thin wrappers around pthreads 820// threads, very very thin wrappers around pthreads
655 821
656struct thread 822struct thread

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines