ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.51 by root, Sun Jul 1 05:00:18 2007 UTC vs.
Revision 1.80 by root, Tue Dec 23 01:51:28 2008 UTC

1/* 1/*
2 * This file is part of Crossfire TRT, the Roguelike Realtime MORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Crossfire TRT is free software: you can redistribute it and/or modify 6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by 7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or 8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version. 9 * (at your option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 * 18 *
19 * The authors can be reached via e-mail to <crossfire@schmorp.de> 19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 20 */
21 21
22#ifndef UTIL_H__ 22#ifndef UTIL_H__
23#define UTIL_H__ 23#define UTIL_H__
24 24
25//#define PREFER_MALLOC 25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
26 28
27#if __GNUC__ >= 3 29#if __GNUC__ >= 3
28# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
29# define expect(expr,value) __builtin_expect ((expr),(value)) 31# define expect(expr,value) __builtin_expect ((expr),(value))
30# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) 32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
42// is mostly true or mosty false. note that these return 44// is mostly true or mosty false. note that these return
43// booleans, not the expression. 45// booleans, not the expression.
44#define expect_false(expr) expect ((expr) != 0, 0) 46#define expect_false(expr) expect ((expr) != 0, 0)
45#define expect_true(expr) expect ((expr) != 0, 1) 47#define expect_true(expr) expect ((expr) != 0, 1)
46 48
49#include <pthread.h>
50
47#include <cstddef> 51#include <cstddef>
48#include <cmath> 52#include <cmath>
49#include <new> 53#include <new>
50#include <vector> 54#include <vector>
51 55
52#include <glib.h> 56#include <glib.h>
53 57
54#include <shstr.h> 58#include <shstr.h>
55#include <traits.h> 59#include <traits.h>
60
61#if DEBUG_SALLOC
62# define g_slice_alloc0(s) debug_slice_alloc0(s)
63# define g_slice_alloc(s) debug_slice_alloc(s)
64# define g_slice_free1(s,p) debug_slice_free1(s,p)
65void *g_slice_alloc (unsigned long size);
66void *g_slice_alloc0 (unsigned long size);
67void g_slice_free1 (unsigned long size, void *ptr);
68#elif PREFER_MALLOC
69# define g_slice_alloc0(s) calloc (1, (s))
70# define g_slice_alloc(s) malloc ((s))
71# define g_slice_free1(s,p) free ((p))
72#endif
56 73
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr) 75#define auto(var,expr) decltype(expr) var = (expr)
59 76
60// very ugly macro that basicaly declares and initialises a variable 77// very ugly macro that basicaly declares and initialises a variable
70 87
71// in range excluding end 88// in range excluding end
72#define IN_RANGE_EXC(val,beg,end) \ 89#define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74 91
92void cleanup (const char *cause, bool make_core = false);
75void fork_abort (const char *msg); 93void fork_abort (const char *msg);
76 94
77// rationale for using (U) not (T) is to reduce signed/unsigned issues, 95// rationale for using (U) not (T) is to reduce signed/unsigned issues,
78// as a is often a constant while b is the variable. it is still a bug, though. 96// as a is often a constant while b is the variable. it is still a bug, though.
79template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
80template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
81template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
82 100
101template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
102template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
103template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
104
83template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 105template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106
107template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109
110// sign returns -1 or +1
111template<typename T>
112static inline T sign (T v) { return v < 0 ? -1 : +1; }
113// relies on 2c representation
114template<>
115inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
116
117// sign0 returns -1, 0 or +1
118template<typename T>
119static inline T sign0 (T v) { return v ? sign (v) : 0; }
120
121// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
123// div, round-up
124template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
125// div, round-down
126template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
84 127
85template<typename T> 128template<typename T>
86static inline T 129static inline T
87lerp (T val, T min_in, T max_in, T min_out, T max_out) 130lerp (T val, T min_in, T max_in, T min_out, T max_out)
88{ 131{
89 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 132 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
133}
134
135// lerp, round-down
136template<typename T>
137static inline T
138lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
139{
140 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
141}
142
143// lerp, round-up
144template<typename T>
145static inline T
146lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
147{
148 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
90} 149}
91 150
92// lots of stuff taken from FXT 151// lots of stuff taken from FXT
93 152
94/* Rotate right. This is used in various places for checksumming */ 153/* Rotate right. This is used in various places for checksumming */
172absdir (int d) 231absdir (int d)
173{ 232{
174 return ((d - 1) & 7) + 1; 233 return ((d - 1) & 7) + 1;
175} 234}
176 235
236extern ssize_t slice_alloc; // statistics
237
238void *salloc_ (int n) throw (std::bad_alloc);
239void *salloc_ (int n, void *src) throw (std::bad_alloc);
240
241// strictly the same as g_slice_alloc, but never returns 0
242template<typename T>
243inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
244
245// also copies src into the new area, like "memdup"
246// if src is 0, clears the memory
247template<typename T>
248inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
249
250// clears the memory
251template<typename T>
252inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
253
254// for symmetry
255template<typename T>
256inline void sfree (T *ptr, int n = 1) throw ()
257{
258 if (expect_true (ptr))
259 {
260 slice_alloc -= n * sizeof (T);
261 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
262 g_slice_free1 (n * sizeof (T), (void *)ptr);
263 assert (slice_alloc >= 0);//D
264 }
265}
266
267// nulls the pointer
268template<typename T>
269inline void sfree0 (T *&ptr, int n = 1) throw ()
270{
271 sfree<T> (ptr, n);
272 ptr = 0;
273}
274
177// makes dynamically allocated objects zero-initialised 275// makes dynamically allocated objects zero-initialised
178struct zero_initialised 276struct zero_initialised
179{ 277{
180 void *operator new (size_t s, void *p) 278 void *operator new (size_t s, void *p)
181 { 279 {
183 return p; 281 return p;
184 } 282 }
185 283
186 void *operator new (size_t s) 284 void *operator new (size_t s)
187 { 285 {
188 return g_slice_alloc0 (s); 286 return salloc0<char> (s);
189 } 287 }
190 288
191 void *operator new[] (size_t s) 289 void *operator new[] (size_t s)
192 { 290 {
193 return g_slice_alloc0 (s); 291 return salloc0<char> (s);
194 } 292 }
195 293
196 void operator delete (void *p, size_t s) 294 void operator delete (void *p, size_t s)
197 { 295 {
198 g_slice_free1 (s, p); 296 sfree ((char *)p, s);
199 } 297 }
200 298
201 void operator delete[] (void *p, size_t s) 299 void operator delete[] (void *p, size_t s)
202 { 300 {
203 g_slice_free1 (s, p); 301 sfree ((char *)p, s);
204 } 302 }
205}; 303};
206 304
207void *salloc_ (int n) throw (std::bad_alloc); 305// makes dynamically allocated objects zero-initialised
208void *salloc_ (int n, void *src) throw (std::bad_alloc); 306struct slice_allocated
209
210// strictly the same as g_slice_alloc, but never returns 0
211template<typename T>
212inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
213
214// also copies src into the new area, like "memdup"
215// if src is 0, clears the memory
216template<typename T>
217inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
218
219// clears the memory
220template<typename T>
221inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
222
223// for symmetry
224template<typename T>
225inline void sfree (T *ptr, int n = 1) throw ()
226{ 307{
227#ifdef PREFER_MALLOC 308 void *operator new (size_t s, void *p)
228 free (ptr); 309 {
229#else 310 return p;
230 g_slice_free1 (n * sizeof (T), (void *)ptr); 311 }
231#endif 312
232} 313 void *operator new (size_t s)
314 {
315 return salloc<char> (s);
316 }
317
318 void *operator new[] (size_t s)
319 {
320 return salloc<char> (s);
321 }
322
323 void operator delete (void *p, size_t s)
324 {
325 sfree ((char *)p, s);
326 }
327
328 void operator delete[] (void *p, size_t s)
329 {
330 sfree ((char *)p, s);
331 }
332};
233 333
234// a STL-compatible allocator that uses g_slice 334// a STL-compatible allocator that uses g_slice
235// boy, this is verbose 335// boy, this is verbose
236template<typename Tp> 336template<typename Tp>
237struct slice_allocator 337struct slice_allocator
249 { 349 {
250 typedef slice_allocator<U> other; 350 typedef slice_allocator<U> other;
251 }; 351 };
252 352
253 slice_allocator () throw () { } 353 slice_allocator () throw () { }
254 slice_allocator (const slice_allocator &o) throw () { } 354 slice_allocator (const slice_allocator &) throw () { }
255 template<typename Tp2> 355 template<typename Tp2>
256 slice_allocator (const slice_allocator<Tp2> &) throw () { } 356 slice_allocator (const slice_allocator<Tp2> &) throw () { }
257 357
258 ~slice_allocator () { } 358 ~slice_allocator () { }
259 359
268 void deallocate (pointer p, size_type n) 368 void deallocate (pointer p, size_type n)
269 { 369 {
270 sfree<Tp> (p, n); 370 sfree<Tp> (p, n);
271 } 371 }
272 372
273 size_type max_size ()const throw () 373 size_type max_size () const throw ()
274 { 374 {
275 return size_t (-1) / sizeof (Tp); 375 return size_t (-1) / sizeof (Tp);
276 } 376 }
277 377
278 void construct (pointer p, const Tp &val) 378 void construct (pointer p, const Tp &val)
303 } 403 }
304 404
305 void seed (uint32_t seed); 405 void seed (uint32_t seed);
306 uint32_t next (); 406 uint32_t next ();
307 407
308 // uniform distribution 408 // uniform distribution, 0 .. max (0, num - 1)
309 uint32_t operator ()(uint32_t num) 409 uint32_t operator ()(uint32_t num)
310 { 410 {
311 return is_constant (num) 411 return is_constant (num)
312 ? (next () * (uint64_t)num) >> 32U 412 ? (next () * (uint64_t)num) >> 32U
313 : get_range (num); 413 : get_range (num);
331 int get_range (int r_min, int r_max); 431 int get_range (int r_min, int r_max);
332}; 432};
333 433
334typedef tausworthe_random_generator rand_gen; 434typedef tausworthe_random_generator rand_gen;
335 435
336extern rand_gen rndm; 436extern rand_gen rndm, rmg_rndm;
437
438INTERFACE_CLASS (attachable)
439struct refcnt_base
440{
441 typedef int refcnt_t;
442 mutable refcnt_t ACC (RW, refcnt);
443
444 MTH void refcnt_inc () const { ++refcnt; }
445 MTH void refcnt_dec () const { --refcnt; }
446
447 refcnt_base () : refcnt (0) { }
448};
449
450// to avoid branches with more advanced compilers
451extern refcnt_base::refcnt_t refcnt_dummy;
337 452
338template<class T> 453template<class T>
339struct refptr 454struct refptr
340{ 455{
456 // p if not null
457 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
458
459 void refcnt_dec ()
460 {
461 if (!is_constant (p))
462 --*refcnt_ref ();
463 else if (p)
464 --p->refcnt;
465 }
466
467 void refcnt_inc ()
468 {
469 if (!is_constant (p))
470 ++*refcnt_ref ();
471 else if (p)
472 ++p->refcnt;
473 }
474
341 T *p; 475 T *p;
342 476
343 refptr () : p(0) { } 477 refptr () : p(0) { }
344 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 478 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
345 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 479 refptr (T *p) : p(p) { refcnt_inc (); }
346 ~refptr () { if (p) p->refcnt_dec (); } 480 ~refptr () { refcnt_dec (); }
347 481
348 const refptr<T> &operator =(T *o) 482 const refptr<T> &operator =(T *o)
349 { 483 {
484 // if decrementing ever destroys we need to reverse the order here
350 if (p) p->refcnt_dec (); 485 refcnt_dec ();
351 p = o; 486 p = o;
352 if (p) p->refcnt_inc (); 487 refcnt_inc ();
353
354 return *this; 488 return *this;
355 } 489 }
356 490
357 const refptr<T> &operator =(const refptr<T> o) 491 const refptr<T> &operator =(const refptr<T> &o)
358 { 492 {
359 *this = o.p; 493 *this = o.p;
360 return *this; 494 return *this;
361 } 495 }
362 496
363 T &operator * () const { return *p; } 497 T &operator * () const { return *p; }
364 T *operator ->() const { return p; } 498 T *operator ->() const { return p; }
365 499
366 operator T *() const { return p; } 500 operator T *() const { return p; }
367}; 501};
368 502
369typedef refptr<maptile> maptile_ptr; 503typedef refptr<maptile> maptile_ptr;
405 return !strcmp (a, b); 539 return !strcmp (a, b);
406 } 540 }
407}; 541};
408 542
409// Mostly the same as std::vector, but insert/erase can reorder 543// Mostly the same as std::vector, but insert/erase can reorder
410// the elements, making insret/remove O(1) instead of O(n). 544// the elements, making append(=insert)/remove O(1) instead of O(n).
411// 545//
412// NOTE: only some forms of erase/insert are available 546// NOTE: only some forms of erase are available
413template<class T> 547template<class T>
414struct unordered_vector : std::vector<T, slice_allocator<T> > 548struct unordered_vector : std::vector<T, slice_allocator<T> >
415{ 549{
416 typedef typename unordered_vector::iterator iterator; 550 typedef typename unordered_vector::iterator iterator;
417 551
458 return obj->*indexmember 592 return obj->*indexmember
459 ? this->begin () + obj->*indexmember - 1 593 ? this->begin () + obj->*indexmember - 1
460 : this->end (); 594 : this->end ();
461 } 595 }
462 596
597 void push_back (T *obj)
598 {
599 std::vector<T *, slice_allocator<T *> >::push_back (obj);
600 obj->*indexmember = this->size ();
601 }
602
463 void insert (T *obj) 603 void insert (T *obj)
464 { 604 {
465 push_back (obj); 605 push_back (obj);
466 obj->*indexmember = this->size ();
467 } 606 }
468 607
469 void insert (T &obj) 608 void insert (T &obj)
470 { 609 {
471 insert (&obj); 610 insert (&obj);
501 assign ((char *)&dst, src, N); 640 assign ((char *)&dst, src, N);
502} 641}
503 642
504typedef double tstamp; 643typedef double tstamp;
505 644
506// return current time as timestampe 645// return current time as timestamp
507tstamp now (); 646tstamp now ();
508 647
509int similar_direction (int a, int b); 648int similar_direction (int a, int b);
510 649
511// like printf, but returns a std::string 650// like sprintf, but returns a "static" buffer
512const std::string format (const char *format, ...); 651const char *format (const char *format, ...);
513 652
653/////////////////////////////////////////////////////////////////////////////
654// threads, very very thin wrappers around pthreads
655
656struct thread
657{
658 pthread_t id;
659
660 void start (void *(*start_routine)(void *), void *arg = 0);
661
662 void cancel ()
663 {
664 pthread_cancel (id);
665 }
666
667 void *join ()
668 {
669 void *ret;
670
671 if (pthread_join (id, &ret))
672 cleanup ("pthread_join failed", 1);
673
674 return ret;
675 }
676};
677
678// note that mutexes are not classes
679typedef pthread_mutex_t smutex;
680
681#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
682 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
683#else
684 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
514#endif 685#endif
515 686
687#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
688#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
689#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
690
691typedef pthread_cond_t scond;
692
693#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
694#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
695#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
696#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
697
698#endif
699

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines