ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.57 by root, Tue Oct 16 05:34:24 2007 UTC vs.
Revision 1.81 by root, Fri Dec 26 10:36:42 2008 UTC

1/* 1/*
2 * This file is part of Crossfire TRT, the Roguelike Realtime MORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Crossfire TRT is free software: you can redistribute it and/or modify 6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by 7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or 8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version. 9 * (at your option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 * 18 *
19 * The authors can be reached via e-mail to <crossfire@schmorp.de> 19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 20 */
21 21
22#ifndef UTIL_H__ 22#ifndef UTIL_H__
23#define UTIL_H__ 23#define UTIL_H__
24 24
25//#define PREFER_MALLOC 25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
26 28
27#if __GNUC__ >= 3 29#if __GNUC__ >= 3
28# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
29# define expect(expr,value) __builtin_expect ((expr),(value)) 31# define expect(expr,value) __builtin_expect ((expr),(value))
30# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) 32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
42// is mostly true or mosty false. note that these return 44// is mostly true or mosty false. note that these return
43// booleans, not the expression. 45// booleans, not the expression.
44#define expect_false(expr) expect ((expr) != 0, 0) 46#define expect_false(expr) expect ((expr) != 0, 0)
45#define expect_true(expr) expect ((expr) != 0, 1) 47#define expect_true(expr) expect ((expr) != 0, 1)
46 48
49#include <pthread.h>
50
47#include <cstddef> 51#include <cstddef>
48#include <cmath> 52#include <cmath>
49#include <new> 53#include <new>
50#include <vector> 54#include <vector>
51 55
52#include <glib.h> 56#include <glib.h>
53 57
54#include <shstr.h> 58#include <shstr.h>
55#include <traits.h> 59#include <traits.h>
56 60
61#if DEBUG_SALLOC
62# define g_slice_alloc0(s) debug_slice_alloc0(s)
63# define g_slice_alloc(s) debug_slice_alloc(s)
64# define g_slice_free1(s,p) debug_slice_free1(s,p)
65void *g_slice_alloc (unsigned long size);
66void *g_slice_alloc0 (unsigned long size);
67void g_slice_free1 (unsigned long size, void *ptr);
68#elif PREFER_MALLOC
69# define g_slice_alloc0(s) calloc (1, (s))
70# define g_slice_alloc(s) malloc ((s))
71# define g_slice_free1(s,p) free ((p))
72#endif
73
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 74// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr) 75#define auto(var,expr) decltype(expr) var = (expr)
59 76
60// very ugly macro that basicaly declares and initialises a variable 77// very ugly macro that basically declares and initialises a variable
61// that is in scope for the next statement only 78// that is in scope for the next statement only
62// works only for stuff that can be assigned 0 and converts to false 79// works only for stuff that can be assigned 0 and converts to false
63// (note: works great for pointers) 80// (note: works great for pointers)
64// most ugly macro I ever wrote 81// most ugly macro I ever wrote
65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 82#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
70 87
71// in range excluding end 88// in range excluding end
72#define IN_RANGE_EXC(val,beg,end) \ 89#define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74 91
92void cleanup (const char *cause, bool make_core = false);
75void fork_abort (const char *msg); 93void fork_abort (const char *msg);
76 94
77// rationale for using (U) not (T) is to reduce signed/unsigned issues, 95// rationale for using (U) not (T) is to reduce signed/unsigned issues,
78// as a is often a constant while b is the variable. it is still a bug, though. 96// as a is often a constant while b is the variable. it is still a bug, though.
79template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 97template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
80template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 98template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
81template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 99template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
82 100
101template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
102template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
103template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
104
83template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 105template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106
107template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109
110// sign returns -1 or +1
111template<typename T>
112static inline T sign (T v) { return v < 0 ? -1 : +1; }
113// relies on 2c representation
114template<>
115inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
116
117// sign0 returns -1, 0 or +1
118template<typename T>
119static inline T sign0 (T v) { return v ? sign (v) : 0; }
120
121// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
123// div, round-up
124template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
125// div, round-down
126template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
84 127
85template<typename T> 128template<typename T>
86static inline T 129static inline T
87lerp (T val, T min_in, T max_in, T min_out, T max_out) 130lerp (T val, T min_in, T max_in, T min_out, T max_out)
88{ 131{
89 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 132 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
133}
134
135// lerp, round-down
136template<typename T>
137static inline T
138lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
139{
140 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
141}
142
143// lerp, round-up
144template<typename T>
145static inline T
146lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
147{
148 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
90} 149}
91 150
92// lots of stuff taken from FXT 151// lots of stuff taken from FXT
93 152
94/* Rotate right. This is used in various places for checksumming */ 153/* Rotate right. This is used in various places for checksumming */
172absdir (int d) 231absdir (int d)
173{ 232{
174 return ((d - 1) & 7) + 1; 233 return ((d - 1) & 7) + 1;
175} 234}
176 235
177extern size_t slice_alloc; // statistics 236extern ssize_t slice_alloc; // statistics
237
238void *salloc_ (int n) throw (std::bad_alloc);
239void *salloc_ (int n, void *src) throw (std::bad_alloc);
240
241// strictly the same as g_slice_alloc, but never returns 0
242template<typename T>
243inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
244
245// also copies src into the new area, like "memdup"
246// if src is 0, clears the memory
247template<typename T>
248inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
249
250// clears the memory
251template<typename T>
252inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
253
254// for symmetry
255template<typename T>
256inline void sfree (T *ptr, int n = 1) throw ()
257{
258 if (expect_true (ptr))
259 {
260 slice_alloc -= n * sizeof (T);
261 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
262 g_slice_free1 (n * sizeof (T), (void *)ptr);
263 assert (slice_alloc >= 0);//D
264 }
265}
266
267// nulls the pointer
268template<typename T>
269inline void sfree0 (T *&ptr, int n = 1) throw ()
270{
271 sfree<T> (ptr, n);
272 ptr = 0;
273}
178 274
179// makes dynamically allocated objects zero-initialised 275// makes dynamically allocated objects zero-initialised
180struct zero_initialised 276struct zero_initialised
181{ 277{
182 void *operator new (size_t s, void *p) 278 void *operator new (size_t s, void *p)
185 return p; 281 return p;
186 } 282 }
187 283
188 void *operator new (size_t s) 284 void *operator new (size_t s)
189 { 285 {
190 slice_alloc += s;
191 return g_slice_alloc0 (s); 286 return salloc0<char> (s);
192 } 287 }
193 288
194 void *operator new[] (size_t s) 289 void *operator new[] (size_t s)
195 { 290 {
196 slice_alloc += s;
197 return g_slice_alloc0 (s); 291 return salloc0<char> (s);
198 } 292 }
199 293
200 void operator delete (void *p, size_t s) 294 void operator delete (void *p, size_t s)
201 { 295 {
202 slice_alloc -= s; 296 sfree ((char *)p, s);
203 g_slice_free1 (s, p);
204 } 297 }
205 298
206 void operator delete[] (void *p, size_t s) 299 void operator delete[] (void *p, size_t s)
207 { 300 {
208 slice_alloc -= s; 301 sfree ((char *)p, s);
209 g_slice_free1 (s, p);
210 } 302 }
211}; 303};
212 304
213void *salloc_ (int n) throw (std::bad_alloc); 305// makes dynamically allocated objects zero-initialised
214void *salloc_ (int n, void *src) throw (std::bad_alloc); 306struct slice_allocated
215
216// strictly the same as g_slice_alloc, but never returns 0
217template<typename T>
218inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
219
220// also copies src into the new area, like "memdup"
221// if src is 0, clears the memory
222template<typename T>
223inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
224
225// clears the memory
226template<typename T>
227inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
228
229// for symmetry
230template<typename T>
231inline void sfree (T *ptr, int n = 1) throw ()
232{ 307{
233#ifdef PREFER_MALLOC 308 void *operator new (size_t s, void *p)
234 free (ptr); 309 {
235#else 310 return p;
236 slice_alloc -= n * sizeof (T); 311 }
237 g_slice_free1 (n * sizeof (T), (void *)ptr); 312
238#endif 313 void *operator new (size_t s)
239} 314 {
315 return salloc<char> (s);
316 }
317
318 void *operator new[] (size_t s)
319 {
320 return salloc<char> (s);
321 }
322
323 void operator delete (void *p, size_t s)
324 {
325 sfree ((char *)p, s);
326 }
327
328 void operator delete[] (void *p, size_t s)
329 {
330 sfree ((char *)p, s);
331 }
332};
240 333
241// a STL-compatible allocator that uses g_slice 334// a STL-compatible allocator that uses g_slice
242// boy, this is verbose 335// boy, this is verbose
243template<typename Tp> 336template<typename Tp>
244struct slice_allocator 337struct slice_allocator
256 { 349 {
257 typedef slice_allocator<U> other; 350 typedef slice_allocator<U> other;
258 }; 351 };
259 352
260 slice_allocator () throw () { } 353 slice_allocator () throw () { }
261 slice_allocator (const slice_allocator &o) throw () { } 354 slice_allocator (const slice_allocator &) throw () { }
262 template<typename Tp2> 355 template<typename Tp2>
263 slice_allocator (const slice_allocator<Tp2> &) throw () { } 356 slice_allocator (const slice_allocator<Tp2> &) throw () { }
264 357
265 ~slice_allocator () { } 358 ~slice_allocator () { }
266 359
275 void deallocate (pointer p, size_type n) 368 void deallocate (pointer p, size_type n)
276 { 369 {
277 sfree<Tp> (p, n); 370 sfree<Tp> (p, n);
278 } 371 }
279 372
280 size_type max_size ()const throw () 373 size_type max_size () const throw ()
281 { 374 {
282 return size_t (-1) / sizeof (Tp); 375 return size_t (-1) / sizeof (Tp);
283 } 376 }
284 377
285 void construct (pointer p, const Tp &val) 378 void construct (pointer p, const Tp &val)
310 } 403 }
311 404
312 void seed (uint32_t seed); 405 void seed (uint32_t seed);
313 uint32_t next (); 406 uint32_t next ();
314 407
315 // uniform distribution 408 // uniform distribution, 0 .. max (0, num - 1)
316 uint32_t operator ()(uint32_t num) 409 uint32_t operator ()(uint32_t num)
317 { 410 {
318 return is_constant (num) 411 return is_constant (num)
319 ? (next () * (uint64_t)num) >> 32U 412 ? (next () * (uint64_t)num) >> 32U
320 : get_range (num); 413 : get_range (num);
338 int get_range (int r_min, int r_max); 431 int get_range (int r_min, int r_max);
339}; 432};
340 433
341typedef tausworthe_random_generator rand_gen; 434typedef tausworthe_random_generator rand_gen;
342 435
343extern rand_gen rndm; 436extern rand_gen rndm, rmg_rndm;
344 437
345INTERFACE_CLASS (attachable) 438INTERFACE_CLASS (attachable)
346struct refcnt_base 439struct refcnt_base
347{ 440{
348 typedef int refcnt_t; 441 typedef int refcnt_t;
547 assign ((char *)&dst, src, N); 640 assign ((char *)&dst, src, N);
548} 641}
549 642
550typedef double tstamp; 643typedef double tstamp;
551 644
552// return current time as timestampe 645// return current time as timestamp
553tstamp now (); 646tstamp now ();
554 647
555int similar_direction (int a, int b); 648int similar_direction (int a, int b);
556 649
557// like sprintf, but returns a "static" buffer 650// like sprintf, but returns a "static" buffer
558const char *format (const char *format, ...); 651const char *format (const char *format, ...);
559 652
653/////////////////////////////////////////////////////////////////////////////
654// threads, very very thin wrappers around pthreads
655
656struct thread
657{
658 pthread_t id;
659
660 void start (void *(*start_routine)(void *), void *arg = 0);
661
662 void cancel ()
663 {
664 pthread_cancel (id);
665 }
666
667 void *join ()
668 {
669 void *ret;
670
671 if (pthread_join (id, &ret))
672 cleanup ("pthread_join failed", 1);
673
674 return ret;
675 }
676};
677
678// note that mutexes are not classes
679typedef pthread_mutex_t smutex;
680
681#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
682 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
683#else
684 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
560#endif 685#endif
561 686
687#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
688#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
689#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
690
691typedef pthread_cond_t scond;
692
693#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
694#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
695#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
696#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
697
698#endif
699

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines