ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.16 by root, Fri Nov 17 19:40:54 2006 UTC vs.
Revision 1.88 by root, Tue May 5 04:51:56 2009 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
1#ifndef UTIL_H__ 22#ifndef UTIL_H__
2#define UTIL_H__ 23#define UTIL_H__
3 24
25#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27#define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
4#if __GNUC__ >= 3 29#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 30# define is_constant(c) __builtin_constant_p (c)
31# define expect(expr,value) __builtin_expect ((expr),(value))
32# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33# define noinline __attribute__((__noinline__))
6#else 34#else
7# define is_constant(c) 0 35# define is_constant(c) 0
36# define expect(expr,value) (expr)
37# define prefetch(addr,rw,locality)
38# define noinline
8#endif 39#endif
9 40
41#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
42# define decltype(x) typeof(x)
43#endif
44
45// put into ifs if you are very sure that the expression
46// is mostly true or mosty false. note that these return
47// booleans, not the expression.
48#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
49#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
50
51#include <pthread.h>
52
10#include <cstddef> 53#include <cstddef>
54#include <cmath>
55#include <new>
56#include <vector>
11 57
12#include <glib.h> 58#include <glib.h>
13 59
60#include <shstr.h>
61#include <traits.h>
62
63#if DEBUG_SALLOC
64# define g_slice_alloc0(s) debug_slice_alloc0(s)
65# define g_slice_alloc(s) debug_slice_alloc(s)
66# define g_slice_free1(s,p) debug_slice_free1(s,p)
67void *g_slice_alloc (unsigned long size);
68void *g_slice_alloc0 (unsigned long size);
69void g_slice_free1 (unsigned long size, void *ptr);
70#elif PREFER_MALLOC
71# define g_slice_alloc0(s) calloc (1, (s))
72# define g_slice_alloc(s) malloc ((s))
73# define g_slice_free1(s,p) free ((p))
74#endif
75
14// use a gcc extension for auto declarations until ISO C++ sanctifies them 76// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
15#define AUTODECL(var,expr) typeof(expr) var = (expr) 77#define auto(var,expr) decltype(expr) var = (expr)
78
79// very ugly macro that basically declares and initialises a variable
80// that is in scope for the next statement only
81// works only for stuff that can be assigned 0 and converts to false
82// (note: works great for pointers)
83// most ugly macro I ever wrote
84#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
85
86// in range including end
87#define IN_RANGE_INC(val,beg,end) \
88 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
89
90// in range excluding end
91#define IN_RANGE_EXC(val,beg,end) \
92 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
93
94void cleanup (const char *cause, bool make_core = false);
95void fork_abort (const char *msg);
96
97// rationale for using (U) not (T) is to reduce signed/unsigned issues,
98// as a is often a constant while b is the variable. it is still a bug, though.
99template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
100template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
101template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
102
103template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
104template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
105template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
106
107template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
108
109template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
110template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
111
112// sign returns -1 or +1
113template<typename T>
114static inline T sign (T v) { return v < 0 ? -1 : +1; }
115// relies on 2c representation
116template<>
117inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
118
119// sign0 returns -1, 0 or +1
120template<typename T>
121static inline T sign0 (T v) { return v ? sign (v) : 0; }
122
123// div* only work correctly for div > 0
124// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125template<typename T> static inline T div (T val, T div)
126{
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128}
129// div, round-up
130template<typename T> static inline T div_ru (T val, T div)
131{
132 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
133}
134// div, round-down
135template<typename T> static inline T div_rd (T val, T div)
136{
137 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
138}
139
140// lerp* only work correctly for min_in < max_in
141// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
142template<typename T>
143static inline T
144lerp (T val, T min_in, T max_in, T min_out, T max_out)
145{
146 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
147}
148
149// lerp, round-down
150template<typename T>
151static inline T
152lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
153{
154 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
155}
156
157// lerp, round-up
158template<typename T>
159static inline T
160lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
161{
162 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
163}
164
165// lots of stuff taken from FXT
166
167/* Rotate right. This is used in various places for checksumming */
168//TODO: that sucks, use a better checksum algo
169static inline uint32_t
170rotate_right (uint32_t c, uint32_t count = 1)
171{
172 return (c << (32 - count)) | (c >> count);
173}
174
175static inline uint32_t
176rotate_left (uint32_t c, uint32_t count = 1)
177{
178 return (c >> (32 - count)) | (c << count);
179}
180
181// Return abs(a-b)
182// Both a and b must not have the most significant bit set
183static inline uint32_t
184upos_abs_diff (uint32_t a, uint32_t b)
185{
186 long d1 = b - a;
187 long d2 = (d1 & (d1 >> 31)) << 1;
188
189 return d1 - d2; // == (b - d) - (a + d);
190}
191
192// Both a and b must not have the most significant bit set
193static inline uint32_t
194upos_min (uint32_t a, uint32_t b)
195{
196 int32_t d = b - a;
197 d &= d >> 31;
198 return a + d;
199}
200
201// Both a and b must not have the most significant bit set
202static inline uint32_t
203upos_max (uint32_t a, uint32_t b)
204{
205 int32_t d = b - a;
206 d &= d >> 31;
207 return b - d;
208}
209
210// this is much faster than crossfires original algorithm
211// on modern cpus
212inline int
213isqrt (int n)
214{
215 return (int)sqrtf ((float)n);
216}
217
218// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
219#if 0
220// and has a max. error of 6 in the range -100..+100.
221#else
222// and has a max. error of 9 in the range -100..+100.
223#endif
224inline int
225idistance (int dx, int dy)
226{
227 unsigned int dx_ = abs (dx);
228 unsigned int dy_ = abs (dy);
229
230#if 0
231 return dx_ > dy_
232 ? (dx_ * 61685 + dy_ * 26870) >> 16
233 : (dy_ * 61685 + dx_ * 26870) >> 16;
234#else
235 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
236#endif
237}
238
239/*
240 * absdir(int): Returns a number between 1 and 8, which represent
241 * the "absolute" direction of a number (it actually takes care of
242 * "overflow" in previous calculations of a direction).
243 */
244inline int
245absdir (int d)
246{
247 return ((d - 1) & 7) + 1;
248}
249
250extern ssize_t slice_alloc; // statistics
251
252void *salloc_ (int n) throw (std::bad_alloc);
253void *salloc_ (int n, void *src) throw (std::bad_alloc);
254
255// strictly the same as g_slice_alloc, but never returns 0
256template<typename T>
257inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
258
259// also copies src into the new area, like "memdup"
260// if src is 0, clears the memory
261template<typename T>
262inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
263
264// clears the memory
265template<typename T>
266inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
267
268// for symmetry
269template<typename T>
270inline void sfree (T *ptr, int n = 1) throw ()
271{
272 if (expect_true (ptr))
273 {
274 slice_alloc -= n * sizeof (T);
275 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
276 g_slice_free1 (n * sizeof (T), (void *)ptr);
277 assert (slice_alloc >= 0);//D
278 }
279}
280
281// nulls the pointer
282template<typename T>
283inline void sfree0 (T *&ptr, int n = 1) throw ()
284{
285 sfree<T> (ptr, n);
286 ptr = 0;
287}
16 288
17// makes dynamically allocated objects zero-initialised 289// makes dynamically allocated objects zero-initialised
18struct zero_initialised 290struct zero_initialised
19{ 291{
20 void *operator new (size_t s, void *p) 292 void *operator new (size_t s, void *p)
23 return p; 295 return p;
24 } 296 }
25 297
26 void *operator new (size_t s) 298 void *operator new (size_t s)
27 { 299 {
28 return g_slice_alloc0 (s); 300 return salloc0<char> (s);
29 } 301 }
30 302
31 void *operator new[] (size_t s) 303 void *operator new[] (size_t s)
32 { 304 {
33 return g_slice_alloc0 (s); 305 return salloc0<char> (s);
34 } 306 }
35 307
36 void operator delete (void *p, size_t s) 308 void operator delete (void *p, size_t s)
37 { 309 {
38 g_slice_free1 (s, p); 310 sfree ((char *)p, s);
39 } 311 }
40 312
41 void operator delete[] (void *p, size_t s) 313 void operator delete[] (void *p, size_t s)
42 { 314 {
43 g_slice_free1 (s, p); 315 sfree ((char *)p, s);
44 } 316 }
45}; 317};
46 318
47// strictly the same as g_slice_alloc, but never returns 0 319// makes dynamically allocated objects zero-initialised
48void *alloc (int s) throw (std::bad_alloc); 320struct slice_allocated
49// for symmetry
50inline void dealloc (void *p, int s) throw ()
51{ 321{
52 g_slice_free1 (s, p); 322 void *operator new (size_t s, void *p)
53} 323 {
324 return p;
325 }
326
327 void *operator new (size_t s)
328 {
329 return salloc<char> (s);
330 }
331
332 void *operator new[] (size_t s)
333 {
334 return salloc<char> (s);
335 }
336
337 void operator delete (void *p, size_t s)
338 {
339 sfree ((char *)p, s);
340 }
341
342 void operator delete[] (void *p, size_t s)
343 {
344 sfree ((char *)p, s);
345 }
346};
54 347
55// a STL-compatible allocator that uses g_slice 348// a STL-compatible allocator that uses g_slice
56// boy, this is verbose 349// boy, this is verbose
57template<typename Tp> 350template<typename Tp>
58struct slice_allocator 351struct slice_allocator
70 { 363 {
71 typedef slice_allocator<U> other; 364 typedef slice_allocator<U> other;
72 }; 365 };
73 366
74 slice_allocator () throw () { } 367 slice_allocator () throw () { }
75 slice_allocator (const slice_allocator &o) throw () { } 368 slice_allocator (const slice_allocator &) throw () { }
76 template<typename Tp2> 369 template<typename Tp2>
77 slice_allocator (const slice_allocator<Tp2> &) throw () { } 370 slice_allocator (const slice_allocator<Tp2> &) throw () { }
78 371
79 ~slice_allocator () { } 372 ~slice_allocator () { }
80 373
81 pointer address (reference x) const { return &x; } 374 pointer address (reference x) const { return &x; }
82 const_pointer address (const_reference x) const { return &x; } 375 const_pointer address (const_reference x) const { return &x; }
83 376
84 pointer allocate (size_type n, const_pointer = 0) 377 pointer allocate (size_type n, const_pointer = 0)
85 { 378 {
86 return static_cast<pointer>(alloc (n * sizeof (Tp))); 379 return salloc<Tp> (n);
87 } 380 }
88 381
89 void deallocate (pointer p, size_type n) 382 void deallocate (pointer p, size_type n)
90 { 383 {
91 dealloc (static_cast<void *>(p), n * sizeof (Tp)); 384 sfree<Tp> (p, n);
92 } 385 }
93 386
94 size_type max_size ()const throw () 387 size_type max_size () const throw ()
95 { 388 {
96 return size_t (-1) / sizeof (Tp); 389 return size_t (-1) / sizeof (Tp);
97 } 390 }
98 391
99 void construct (pointer p, const Tp &val) 392 void construct (pointer p, const Tp &val)
105 { 398 {
106 p->~Tp (); 399 p->~Tp ();
107 } 400 }
108}; 401};
109 402
403// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
404// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
405// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
406struct tausworthe_random_generator
407{
408 uint32_t state [4];
409
410 void operator =(const tausworthe_random_generator &src)
411 {
412 state [0] = src.state [0];
413 state [1] = src.state [1];
414 state [2] = src.state [2];
415 state [3] = src.state [3];
416 }
417
418 void seed (uint32_t seed);
419 uint32_t next ();
420};
421
422// Xorshift RNGs, George Marsaglia
423// http://www.jstatsoft.org/v08/i14/paper
424// this one is about 40% faster than the tausworthe one above (i.e. not much),
425// despite the inlining, and has the issue of only creating 2**32-1 numbers.
426// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
427struct xorshift_random_generator
428{
429 uint32_t x, y;
430
431 void operator =(const xorshift_random_generator &src)
432 {
433 x = src.x;
434 y = src.y;
435 }
436
437 void seed (uint32_t seed)
438 {
439 x = seed;
440 y = seed * 69069U;
441 }
442
443 uint32_t next ()
444 {
445 uint32_t t = x ^ (x << 10);
446 x = y;
447 y = y ^ (y >> 13) ^ t ^ (t >> 10);
448 return y;
449 }
450};
451
452template<class generator>
453struct random_number_generator : generator
454{
455 // uniform distribution, 0 .. max (0, num - 1)
456 uint32_t operator ()(uint32_t num)
457 {
458 return !is_constant (num) ? get_range (num) // non-constant
459 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
460 : this->next () & (num - 1); // constant, power-of-two
461 }
462
463 // return a number within (min .. max)
464 int operator () (int r_min, int r_max)
465 {
466 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
467 ? r_min + operator ()(r_max - r_min + 1)
468 : get_range (r_min, r_max);
469 }
470
471 double operator ()()
472 {
473 return this->next () / (double)0xFFFFFFFFU;
474 }
475
476protected:
477 uint32_t get_range (uint32_t r_max);
478 int get_range (int r_min, int r_max);
479};
480
481typedef random_number_generator<tausworthe_random_generator> rand_gen;
482
483extern rand_gen rndm, rmg_rndm;
484
485INTERFACE_CLASS (attachable)
110struct refcounted 486struct refcnt_base
111{ 487{
112 refcounted () : refcnt (0) { } 488 typedef int refcnt_t;
113// virtual ~refcounted (); 489 mutable refcnt_t ACC (RW, refcnt);
490
114 void refcnt_inc () { ++refcnt; } 491 MTH void refcnt_inc () const { ++refcnt; }
115 void refcnt_dec () { --refcnt; } 492 MTH void refcnt_dec () const { --refcnt; }
116 bool dead () { return refcnt == 0; } 493
117 mutable int refcnt; 494 refcnt_base () : refcnt (0) { }
118#if 0
119private:
120 static refcounted *rc_first;
121 refcounted *rc_next;
122#endif
123}; 495};
496
497// to avoid branches with more advanced compilers
498extern refcnt_base::refcnt_t refcnt_dummy;
124 499
125template<class T> 500template<class T>
126struct refptr 501struct refptr
127{ 502{
503 // p if not null
504 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
505
506 void refcnt_dec ()
507 {
508 if (!is_constant (p))
509 --*refcnt_ref ();
510 else if (p)
511 --p->refcnt;
512 }
513
514 void refcnt_inc ()
515 {
516 if (!is_constant (p))
517 ++*refcnt_ref ();
518 else if (p)
519 ++p->refcnt;
520 }
521
128 T *p; 522 T *p;
129 523
130 refptr () : p(0) { } 524 refptr () : p(0) { }
131 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 525 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
132 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 526 refptr (T *p) : p(p) { refcnt_inc (); }
133 ~refptr () { if (p) p->refcnt_dec (); } 527 ~refptr () { refcnt_dec (); }
134 528
135 const refptr<T> &operator =(T *o) 529 const refptr<T> &operator =(T *o)
136 { 530 {
531 // if decrementing ever destroys we need to reverse the order here
137 if (p) p->refcnt_dec (); 532 refcnt_dec ();
138 p = o; 533 p = o;
139 if (p) p->refcnt_inc (); 534 refcnt_inc ();
140
141 return *this; 535 return *this;
142 } 536 }
143 537
144 const refptr<T> &operator =(const refptr<T> o) 538 const refptr<T> &operator =(const refptr<T> &o)
145 { 539 {
146 *this = o.p; 540 *this = o.p;
147 return *this; 541 return *this;
148 } 542 }
149 543
150 T &operator * () const { return *p; } 544 T &operator * () const { return *p; }
151 T *operator ->() const { return p; } 545 T *operator ->() const { return p; }
152 546
153 operator T *() const { return p; } 547 operator T *() const { return p; }
154}; 548};
155 549
550typedef refptr<maptile> maptile_ptr;
551typedef refptr<object> object_ptr;
552typedef refptr<archetype> arch_ptr;
553typedef refptr<client> client_ptr;
554typedef refptr<player> player_ptr;
555
156struct str_hash 556struct str_hash
157{ 557{
158 std::size_t operator ()(const char *s) const 558 std::size_t operator ()(const char *s) const
159 { 559 {
160 unsigned long hash = 0; 560#if 0
561 uint32_t hash = 0;
161 562
162 /* use the one-at-a-time hash function, which supposedly is 563 /* use the one-at-a-time hash function, which supposedly is
163 * better than the djb2-like one used by perl5.005, but 564 * better than the djb2-like one used by perl5.005, but
164 * certainly is better then the bug used here before. 565 * certainly is better then the bug used here before.
165 * see http://burtleburtle.net/bob/hash/doobs.html 566 * see http://burtleburtle.net/bob/hash/doobs.html
172 } 573 }
173 574
174 hash += hash << 3; 575 hash += hash << 3;
175 hash ^= hash >> 11; 576 hash ^= hash >> 11;
176 hash += hash << 15; 577 hash += hash << 15;
578#else
579 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
580 // it is about twice as fast as the one-at-a-time one,
581 // with good distribution.
582 // FNV-1a is faster on many cpus because the multiplication
583 // runs concurrent with the looping logic.
584 uint32_t hash = 2166136261;
585
586 while (*s)
587 hash = (hash ^ *s++) * 16777619;
588#endif
177 589
178 return hash; 590 return hash;
179 } 591 }
180}; 592};
181 593
185 { 597 {
186 return !strcmp (a, b); 598 return !strcmp (a, b);
187 } 599 }
188}; 600};
189 601
190#include <vector> 602// Mostly the same as std::vector, but insert/erase can reorder
191 603// the elements, making append(=insert)/remove O(1) instead of O(n).
604//
605// NOTE: only some forms of erase are available
192template<class obj> 606template<class T>
193struct unordered_vector : std::vector<obj, slice_allocator<obj> > 607struct unordered_vector : std::vector<T, slice_allocator<T> >
194{ 608{
195 typedef typename unordered_vector::iterator iterator; 609 typedef typename unordered_vector::iterator iterator;
196 610
197 void erase (unsigned int pos) 611 void erase (unsigned int pos)
198 { 612 {
206 { 620 {
207 erase ((unsigned int )(i - this->begin ())); 621 erase ((unsigned int )(i - this->begin ()));
208 } 622 }
209}; 623};
210 624
211template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 625// This container blends advantages of linked lists
212template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 626// (efficiency) with vectors (random access) by
213template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 627// by using an unordered vector and storing the vector
628// index inside the object.
629//
630// + memory-efficient on most 64 bit archs
631// + O(1) insert/remove
632// + free unique (but varying) id for inserted objects
633// + cache-friendly iteration
634// - only works for pointers to structs
635//
636// NOTE: only some forms of erase/insert are available
637typedef int object_vector_index;
214 638
215template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 639template<class T, object_vector_index T::*indexmember>
640struct object_vector : std::vector<T *, slice_allocator<T *> >
641{
642 typedef typename object_vector::iterator iterator;
643
644 bool contains (const T *obj) const
645 {
646 return obj->*indexmember;
647 }
648
649 iterator find (const T *obj)
650 {
651 return obj->*indexmember
652 ? this->begin () + obj->*indexmember - 1
653 : this->end ();
654 }
655
656 void push_back (T *obj)
657 {
658 std::vector<T *, slice_allocator<T *> >::push_back (obj);
659 obj->*indexmember = this->size ();
660 }
661
662 void insert (T *obj)
663 {
664 push_back (obj);
665 }
666
667 void insert (T &obj)
668 {
669 insert (&obj);
670 }
671
672 void erase (T *obj)
673 {
674 unsigned int pos = obj->*indexmember;
675 obj->*indexmember = 0;
676
677 if (pos < this->size ())
678 {
679 (*this)[pos - 1] = (*this)[this->size () - 1];
680 (*this)[pos - 1]->*indexmember = pos;
681 }
682
683 this->pop_back ();
684 }
685
686 void erase (T &obj)
687 {
688 erase (&obj);
689 }
690};
216 691
217// basically does what strncpy should do, but appends "..." to strings exceeding length 692// basically does what strncpy should do, but appends "..." to strings exceeding length
693// returns the number of bytes actually used (including \0)
218void assign (char *dst, const char *src, int maxlen); 694int assign (char *dst, const char *src, int maxsize);
219 695
220// type-safe version of assign 696// type-safe version of assign
221template<int N> 697template<int N>
222inline void assign (char (&dst)[N], const char *src) 698inline int assign (char (&dst)[N], const char *src)
223{ 699{
224 assign ((char *)&dst, src, N); 700 return assign ((char *)&dst, src, N);
225} 701}
226 702
703typedef double tstamp;
704
705// return current time as timestamp
706tstamp now ();
707
708int similar_direction (int a, int b);
709
710// like sprintf, but returns a "static" buffer
711const char *format (const char *format, ...);
712
713/////////////////////////////////////////////////////////////////////////////
714// threads, very very thin wrappers around pthreads
715
716struct thread
717{
718 pthread_t id;
719
720 void start (void *(*start_routine)(void *), void *arg = 0);
721
722 void cancel ()
723 {
724 pthread_cancel (id);
725 }
726
727 void *join ()
728 {
729 void *ret;
730
731 if (pthread_join (id, &ret))
732 cleanup ("pthread_join failed", 1);
733
734 return ret;
735 }
736};
737
738// note that mutexes are not classes
739typedef pthread_mutex_t smutex;
740
741#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
742 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
743#else
744 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
227#endif 745#endif
228 746
747#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
748#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
749#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
750
751typedef pthread_cond_t scond;
752
753#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
754#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
755#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
756#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
757
758#endif
759

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines