ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.90 by root, Mon Oct 12 14:00:58 2009 UTC vs.
Revision 1.131 by root, Wed Dec 5 21:18:37 2018 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Deliantra is free software: you can redistribute it and/or modify it under 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the 8 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the Affero GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see 18 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>. 19 * <http://www.gnu.org/licenses/>.
19 * 20 *
20 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
21 */ 22 */
22 23
23#ifndef UTIL_H__ 24#ifndef UTIL_H__
24#define UTIL_H__ 25#define UTIL_H__
25 26
26#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0 27#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
27#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs 28#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
28#define PREFER_MALLOC 0 // use malloc and not the slice allocator 29#define PREFER_MALLOC 0 // use malloc and not the slice allocator
29
30#if __GNUC__ >= 3
31# define is_constant(c) __builtin_constant_p (c)
32# define expect(expr,value) __builtin_expect ((expr),(value))
33# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
34# define noinline __attribute__((__noinline__))
35#else
36# define is_constant(c) 0
37# define expect(expr,value) (expr)
38# define prefetch(addr,rw,locality)
39# define noinline
40#endif
41
42#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
43# define decltype(x) typeof(x)
44#endif
45
46// put into ifs if you are very sure that the expression
47// is mostly true or mosty false. note that these return
48// booleans, not the expression.
49#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
50#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
51 30
52#include <pthread.h> 31#include <pthread.h>
53 32
54#include <cstddef> 33#include <cstddef>
55#include <cmath> 34#include <cmath>
56#include <new> 35#include <new>
57#include <vector> 36#include <vector>
58 37
59#include <glib.h> 38#include <glib.h>
60 39
40#include <flat_hash_map.hpp>
41
61#include <shstr.h> 42#include <shstr.h>
62#include <traits.h> 43#include <traits.h>
44
45#include "ecb.h"
63 46
64#if DEBUG_SALLOC 47#if DEBUG_SALLOC
65# define g_slice_alloc0(s) debug_slice_alloc0(s) 48# define g_slice_alloc0(s) debug_slice_alloc0(s)
66# define g_slice_alloc(s) debug_slice_alloc(s) 49# define g_slice_alloc(s) debug_slice_alloc(s)
67# define g_slice_free1(s,p) debug_slice_free1(s,p) 50# define g_slice_free1(s,p) debug_slice_free1(s,p)
72# define g_slice_alloc0(s) calloc (1, (s)) 55# define g_slice_alloc0(s) calloc (1, (s))
73# define g_slice_alloc(s) malloc ((s)) 56# define g_slice_alloc(s) malloc ((s))
74# define g_slice_free1(s,p) free ((p)) 57# define g_slice_free1(s,p) free ((p))
75#endif 58#endif
76 59
77// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
78#define auto(var,expr) decltype(expr) var = (expr)
79
80// very ugly macro that basically declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
81// that is in scope for the next statement only 61// that is in scope for the next statement only
82// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
83// (note: works great for pointers) 63// (note: works great for pointers)
84// most ugly macro I ever wrote 64// most ugly macro I ever wrote
90 70
91// in range excluding end 71// in range excluding end
92#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
93 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
94 74
95void cleanup (const char *cause, bool make_core = false); 75ecb_cold void cleanup (const char *cause, bool make_core = false);
96void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
97 77
98// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
99// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
100template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
101template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
102template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
103 83
104template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); } 84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
105template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); } 85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
106template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); } 86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
113// sign returns -1 or +1 93// sign returns -1 or +1
114template<typename T> 94template<typename T>
115static inline T sign (T v) { return v < 0 ? -1 : +1; } 95static inline T sign (T v) { return v < 0 ? -1 : +1; }
116// relies on 2c representation 96// relies on 2c representation
117template<> 97template<>
118inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); } 98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
119 103
120// sign0 returns -1, 0 or +1 104// sign0 returns -1, 0 or +1
121template<typename T> 105template<typename T>
122static inline T sign0 (T v) { return v ? sign (v) : 0; } 106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
123 111
124// div* only work correctly for div > 0 112// div* only work correctly for div > 0
125// div, with correct rounding (< 0.5 downwards, >=0.5 upwards) 113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126template<typename T> static inline T div (T val, T div) 114template<typename T> static inline T div (T val, T div)
127{ 115{
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div; 116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129} 117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
130// div, round-up 122// div, round-up
131template<typename T> static inline T div_ru (T val, T div) 123template<typename T> static inline T div_ru (T val, T div)
132{ 124{
133 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div; 125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
134} 126}
135// div, round-down 127// div, round-down
136template<typename T> static inline T div_rd (T val, T div) 128template<typename T> static inline T div_rd (T val, T div)
137{ 129{
138 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div; 130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
139} 131}
140 132
141// lerp* only work correctly for min_in < max_in 133// lerp* only work correctly for min_in < max_in
142// Linear intERPolate, scales val from min_in..max_in to min_out..max_out 134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
143template<typename T> 135template<typename T>
206 int32_t d = b - a; 198 int32_t d = b - a;
207 d &= d >> 31; 199 d &= d >> 31;
208 return b - d; 200 return b - d;
209} 201}
210 202
211// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
212// on modern cpus 204// on modern cpus
213inline int 205inline int
214isqrt (int n) 206isqrt (int n)
215{ 207{
216 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
209}
210
211// this is kind of like the ^^ operator, if it would exist, without sequence point.
212// more handy than it looks like, due to the implicit !! done on its arguments
213inline bool
214logical_xor (bool a, bool b)
215{
216 return a != b;
217}
218
219inline bool
220logical_implies (bool a, bool b)
221{
222 return a <= b;
217} 223}
218 224
219// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 225// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
220#if 0 226#if 0
221// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
222#else 228#else
223// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
224#endif 230#endif
225inline int 231inline int
226idistance (int dx, int dy) 232idistance (int dx, int dy)
227{ 233{
228 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
229 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
230 236
231#if 0 237#if 0
232 return dx_ > dy_ 238 return dx_ > dy_
235#else 241#else
236 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
237#endif 243#endif
238} 244}
239 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
240/* 266/*
241 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
242 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
243 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
244 */ 270 */
246absdir (int d) 272absdir (int d)
247{ 273{
248 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
249} 275}
250 276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
251extern ssize_t slice_alloc; // statistics 281extern ssize_t slice_alloc; // statistics
252 282
253void *salloc_ (int n) throw (std::bad_alloc); 283void *salloc_ (int n);
254void *salloc_ (int n, void *src) throw (std::bad_alloc); 284void *salloc_ (int n, void *src);
255 285
256// strictly the same as g_slice_alloc, but never returns 0 286// strictly the same as g_slice_alloc, but never returns 0
257template<typename T> 287template<typename T>
258inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); } 288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
259 289
260// also copies src into the new area, like "memdup" 290// also copies src into the new area, like "memdup"
261// if src is 0, clears the memory 291// if src is 0, clears the memory
262template<typename T> 292template<typename T>
263inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); } 293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
264 294
265// clears the memory 295// clears the memory
266template<typename T> 296template<typename T>
267inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); } 297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
268 298
269// for symmetry 299// for symmetry
270template<typename T> 300template<typename T>
271inline void sfree (T *ptr, int n = 1) throw () 301inline void sfree (T *ptr, int n = 1) noexcept
272{ 302{
273 if (expect_true (ptr)) 303 if (ecb_expect_true (ptr))
274 { 304 {
275 slice_alloc -= n * sizeof (T); 305 slice_alloc -= n * sizeof (T);
276 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T)); 306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
277 g_slice_free1 (n * sizeof (T), (void *)ptr); 307 g_slice_free1 (n * sizeof (T), (void *)ptr);
278 assert (slice_alloc >= 0);//D
279 } 308 }
280} 309}
281 310
282// nulls the pointer 311// nulls the pointer
283template<typename T> 312template<typename T>
284inline void sfree0 (T *&ptr, int n = 1) throw () 313inline void sfree0 (T *&ptr, int n = 1) noexcept
285{ 314{
286 sfree<T> (ptr, n); 315 sfree<T> (ptr, n);
287 ptr = 0; 316 ptr = 0;
288} 317}
289 318
357 typedef const Tp *const_pointer; 386 typedef const Tp *const_pointer;
358 typedef Tp &reference; 387 typedef Tp &reference;
359 typedef const Tp &const_reference; 388 typedef const Tp &const_reference;
360 typedef Tp value_type; 389 typedef Tp value_type;
361 390
362 template <class U> 391 template <class U>
363 struct rebind 392 struct rebind
364 { 393 {
365 typedef slice_allocator<U> other; 394 typedef slice_allocator<U> other;
366 }; 395 };
367 396
368 slice_allocator () throw () { } 397 slice_allocator () noexcept { }
369 slice_allocator (const slice_allocator &) throw () { } 398 slice_allocator (const slice_allocator &) noexcept { }
370 template<typename Tp2> 399 template<typename Tp2>
371 slice_allocator (const slice_allocator<Tp2> &) throw () { } 400 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
372 401
373 ~slice_allocator () { } 402 ~slice_allocator () { }
374 403
375 pointer address (reference x) const { return &x; } 404 pointer address (reference x) const { return &x; }
376 const_pointer address (const_reference x) const { return &x; } 405 const_pointer address (const_reference x) const { return &x; }
383 void deallocate (pointer p, size_type n) 412 void deallocate (pointer p, size_type n)
384 { 413 {
385 sfree<Tp> (p, n); 414 sfree<Tp> (p, n);
386 } 415 }
387 416
388 size_type max_size () const throw () 417 size_type max_size () const noexcept
389 { 418 {
390 return size_t (-1) / sizeof (Tp); 419 return size_t (-1) / sizeof (Tp);
391 } 420 }
392 421
393 void construct (pointer p, const Tp &val) 422 void construct (pointer p, const Tp &val)
399 { 428 {
400 p->~Tp (); 429 p->~Tp ();
401 } 430 }
402}; 431};
403 432
404// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 433// basically a memory area, but refcounted
405// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 434struct refcnt_buf
406// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
407struct tausworthe_random_generator
408{ 435{
409 uint32_t state [4]; 436 char *data;
410 437
411 void operator =(const tausworthe_random_generator &src) 438 refcnt_buf (size_t size = 0);
412 { 439 refcnt_buf (void *data, size_t size);
413 state [0] = src.state [0];
414 state [1] = src.state [1];
415 state [2] = src.state [2];
416 state [3] = src.state [3];
417 }
418 440
419 void seed (uint32_t seed); 441 refcnt_buf (const refcnt_buf &src)
420 uint32_t next ();
421};
422
423// Xorshift RNGs, George Marsaglia
424// http://www.jstatsoft.org/v08/i14/paper
425// this one is about 40% faster than the tausworthe one above (i.e. not much),
426// despite the inlining, and has the issue of only creating 2**32-1 numbers.
427// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
428struct xorshift_random_generator
429{
430 uint32_t x, y;
431
432 void operator =(const xorshift_random_generator &src)
433 { 442 {
434 x = src.x; 443 data = src.data;
435 y = src.y; 444 inc ();
436 } 445 }
437 446
438 void seed (uint32_t seed) 447 ~refcnt_buf ();
439 {
440 x = seed;
441 y = seed * 69069U;
442 }
443 448
444 uint32_t next () 449 refcnt_buf &operator =(const refcnt_buf &src);
450
451 operator char *()
445 { 452 {
446 uint32_t t = x ^ (x << 10);
447 x = y;
448 y = y ^ (y >> 13) ^ t ^ (t >> 10);
449 return y; 453 return data;
450 } 454 }
451};
452 455
453template<class generator> 456 size_t size () const
454struct random_number_generator : generator
455{
456 // uniform distribution, 0 .. max (0, num - 1)
457 uint32_t operator ()(uint32_t num)
458 { 457 {
459 return !is_constant (num) ? get_range (num) // non-constant 458 return _size ();
460 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
461 : this->next () & (num - 1); // constant, power-of-two
462 }
463
464 // return a number within (min .. max)
465 int operator () (int r_min, int r_max)
466 {
467 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
468 ? r_min + operator ()(r_max - r_min + 1)
469 : get_range (r_min, r_max);
470 }
471
472 double operator ()()
473 {
474 return this->next () / (double)0xFFFFFFFFU;
475 } 459 }
476 460
477protected: 461protected:
478 uint32_t get_range (uint32_t r_max); 462 enum {
479 int get_range (int r_min, int r_max); 463 overhead = sizeof (uint32_t) * 2
480}; 464 };
481 465
482typedef random_number_generator<tausworthe_random_generator> rand_gen; 466 uint32_t &_size () const
467 {
468 return ((unsigned int *)data)[-2];
469 }
483 470
484extern rand_gen rndm, rmg_rndm; 471 uint32_t &_refcnt () const
472 {
473 return ((unsigned int *)data)[-1];
474 }
475
476 void _alloc (uint32_t size)
477 {
478 data = ((char *)salloc<char> (size + overhead)) + overhead;
479 _size () = size;
480 _refcnt () = 1;
481 }
482
483 void _dealloc ();
484
485 void inc ()
486 {
487 ++_refcnt ();
488 }
489
490 void dec ()
491 {
492 if (!--_refcnt ())
493 _dealloc ();
494 }
495};
485 496
486INTERFACE_CLASS (attachable) 497INTERFACE_CLASS (attachable)
487struct refcnt_base 498struct refcnt_base
488{ 499{
489 typedef int refcnt_t; 500 typedef int refcnt_t;
504 // p if not null 515 // p if not null
505 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; } 516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
506 517
507 void refcnt_dec () 518 void refcnt_dec ()
508 { 519 {
509 if (!is_constant (p)) 520 if (!ecb_is_constant (p))
510 --*refcnt_ref (); 521 --*refcnt_ref ();
511 else if (p) 522 else if (p)
512 --p->refcnt; 523 --p->refcnt;
513 } 524 }
514 525
515 void refcnt_inc () 526 void refcnt_inc ()
516 { 527 {
517 if (!is_constant (p)) 528 if (!ecb_is_constant (p))
518 ++*refcnt_ref (); 529 ++*refcnt_ref ();
519 else if (p) 530 else if (p)
520 ++p->refcnt; 531 ++p->refcnt;
521 } 532 }
522 533
551typedef refptr<maptile> maptile_ptr; 562typedef refptr<maptile> maptile_ptr;
552typedef refptr<object> object_ptr; 563typedef refptr<object> object_ptr;
553typedef refptr<archetype> arch_ptr; 564typedef refptr<archetype> arch_ptr;
554typedef refptr<client> client_ptr; 565typedef refptr<client> client_ptr;
555typedef refptr<player> player_ptr; 566typedef refptr<player> player_ptr;
567typedef refptr<region> region_ptr;
568
569#define STRHSH_NULL 2166136261
570
571static inline uint32_t
572strhsh (const char *s)
573{
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrently with the looping logic.
579 // we modify the hash a bit to improve its distribution
580 uint32_t hash = STRHSH_NULL;
581
582 while (*s)
583 hash = (hash ^ *s++) * 16777619U;
584
585 return hash ^ (hash >> 16);
586}
587
588static inline uint32_t
589memhsh (const char *s, size_t len)
590{
591 uint32_t hash = STRHSH_NULL;
592
593 while (len--)
594 hash = (hash ^ *s++) * 16777619U;
595
596 return hash;
597}
556 598
557struct str_hash 599struct str_hash
558{ 600{
559 std::size_t operator ()(const char *s) const 601 std::size_t operator ()(const char *s) const
560 { 602 {
561#if 0
562 uint32_t hash = 0;
563
564 /* use the one-at-a-time hash function, which supposedly is
565 * better than the djb2-like one used by perl5.005, but
566 * certainly is better then the bug used here before.
567 * see http://burtleburtle.net/bob/hash/doobs.html
568 */
569 while (*s)
570 {
571 hash += *s++;
572 hash += hash << 10;
573 hash ^= hash >> 6;
574 }
575
576 hash += hash << 3;
577 hash ^= hash >> 11;
578 hash += hash << 15;
579#else
580 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
581 // it is about twice as fast as the one-at-a-time one,
582 // with good distribution.
583 // FNV-1a is faster on many cpus because the multiplication
584 // runs concurrent with the looping logic.
585 uint32_t hash = 2166136261;
586
587 while (*s)
588 hash = (hash ^ *s++) * 16777619;
589#endif
590
591 return hash; 603 return strhsh (s);
592 } 604 }
605
606 std::size_t operator ()(const shstr &s) const
607 {
608 return strhsh (s);
609 }
610
611 typedef ska::power_of_two_hash_policy hash_policy;
593}; 612};
594 613
595struct str_equal 614struct str_equal
596{ 615{
597 bool operator ()(const char *a, const char *b) const 616 bool operator ()(const char *a, const char *b) const
623 } 642 }
624}; 643};
625 644
626// This container blends advantages of linked lists 645// This container blends advantages of linked lists
627// (efficiency) with vectors (random access) by 646// (efficiency) with vectors (random access) by
628// by using an unordered vector and storing the vector 647// using an unordered vector and storing the vector
629// index inside the object. 648// index inside the object.
630// 649//
631// + memory-efficient on most 64 bit archs 650// + memory-efficient on most 64 bit archs
632// + O(1) insert/remove 651// + O(1) insert/remove
633// + free unique (but varying) id for inserted objects 652// + free unique (but varying) id for inserted objects
670 insert (&obj); 689 insert (&obj);
671 } 690 }
672 691
673 void erase (T *obj) 692 void erase (T *obj)
674 { 693 {
675 unsigned int pos = obj->*indexmember; 694 object_vector_index pos = obj->*indexmember;
676 obj->*indexmember = 0; 695 obj->*indexmember = 0;
677 696
678 if (pos < this->size ()) 697 if (pos < this->size ())
679 { 698 {
680 (*this)[pos - 1] = (*this)[this->size () - 1]; 699 (*this)[pos - 1] = (*this)[this->size () - 1];
688 { 707 {
689 erase (&obj); 708 erase (&obj);
690 } 709 }
691}; 710};
692 711
712/////////////////////////////////////////////////////////////////////////////
713
714// something like a vector or stack, but without
715// out of bounds checking
716template<typename T>
717struct fixed_stack
718{
719 T *data;
720 int size;
721 int max;
722
723 fixed_stack ()
724 : size (0), data (0)
725 {
726 }
727
728 fixed_stack (int max)
729 : size (0), max (max)
730 {
731 data = salloc<T> (max);
732 }
733
734 void reset (int new_max)
735 {
736 sfree (data, max);
737 size = 0;
738 max = new_max;
739 data = salloc<T> (max);
740 }
741
742 void free ()
743 {
744 sfree (data, max);
745 data = 0;
746 }
747
748 ~fixed_stack ()
749 {
750 sfree (data, max);
751 }
752
753 T &operator[](int idx)
754 {
755 return data [idx];
756 }
757
758 void push (T v)
759 {
760 data [size++] = v;
761 }
762
763 T &pop ()
764 {
765 return data [--size];
766 }
767
768 T remove (int idx)
769 {
770 T v = data [idx];
771
772 data [idx] = data [--size];
773
774 return v;
775 }
776};
777
778/////////////////////////////////////////////////////////////////////////////
779
693// basically does what strncpy should do, but appends "..." to strings exceeding length 780// basically does what strncpy should do, but appends "..." to strings exceeding length
694// returns the number of bytes actually used (including \0) 781// returns the number of bytes actually used (including \0)
695int assign (char *dst, const char *src, int maxsize); 782int assign (char *dst, const char *src, int maxsize);
696 783
697// type-safe version of assign 784// type-safe version of assign
706// return current time as timestamp 793// return current time as timestamp
707tstamp now (); 794tstamp now ();
708 795
709int similar_direction (int a, int b); 796int similar_direction (int a, int b);
710 797
711// like sprintf, but returns a "static" buffer 798// like v?sprintf, but returns a "static" buffer
712const char *format (const char *format, ...); 799char *vformat (const char *format, va_list ap);
800char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
713 801
714// safety-check player input which will become object->msg 802// safety-check player input which will become object->msg
715bool msg_is_safe (const char *msg); 803bool msg_is_safe (const char *msg);
716 804
717///////////////////////////////////////////////////////////////////////////// 805/////////////////////////////////////////////////////////////////////////////

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines